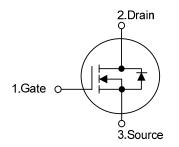


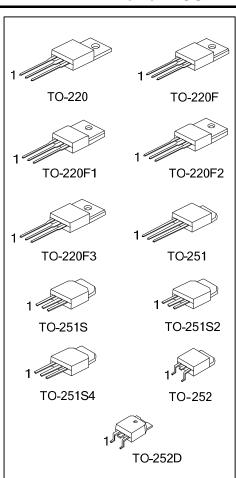
UTC UNISONIC TECHNOLOGIES CO., LTD

4N60K-MT

Preliminary

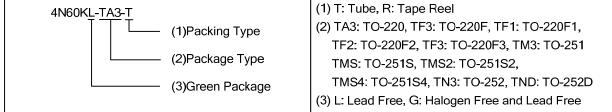
4A, 600V N-CHANNEL **POWER MOSFET**

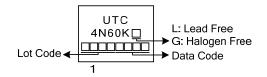

DESCRIPTION


The UTC 4N60K-MT is a high voltage power MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)}$ < 2.5 Ω @ V_{GS} = 10 V, I_D = 2.2 A
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, high Ruggedness


SYMBOL



ORDERING INFORMATION

Ordering Number		Deelvere	Pin	Dealing			
Lead Free	Halogen Free	Package	1	2	3	Packing	
4N60KL-TA3-T	4N60KG-TA3-T	TO-220	G	D	S	Tube	
4N60KL-TF3-T	4N60KG-TF3-T	TO-220F	G	D	S	Tube	
4N60KL-TF1-T	4N60KG-TF1-T	TO-220F1	G	D	S	Tube	
4N60KL-TF2-T	4N60KG-TF2-T	TO-220F2	G	D	S	Tube	
4N60KL-TF3-T	4N60KG-TF3-T	TO-220F3	G	D	S	Tube	
4N60KL-TM3-T	4N60KG-TM3-T	TO-251	G	D	S	Tube	
4N60KL-TMS-T	4N60KG-TMS-T	TO-251S	G	D	S	Tube	
4N60KL-TMS2-T	4N60KG-TMS2-T	TO-251S2	G	D	S	Tube	
4N60KL-TMS4-T	4N60KG-TMS4-T	TO-251S4	G	D	S	Tube	
4N60KL-TN3-R	4N60KG-TN3-R	TO-252	G	D	S	Tape Reel	
4N60KL-TND-R	4N60KG-TND-R	TO-252D	G	D	S	Tape Reel	
Note: Pin Assignment: G: Ga	te D: Drain S: Source						

MARKING

SYMBOL PARAMETER RATINGS UNIT Drain-Source Voltage V_{DSS} 600 V V Gate-Source Voltage V_{GSS} ±30 Avalanche Current (Note 2) I_{AR} 4.4 А Continuous 4.0 А I_{D} Drain Current Pulsed (Note 2) 16 I_{DM} А E_{AS} Avalanche Energy Single Pulsed (Note 3) 210 mJ Peak Diode Recovery dv/dt (Note 4) V/ns dv/dt 4.5 TO-220 106 TO-220F/TO-220F1 36 TO-220F2/TO-220F3 Power Dissipation P_D W TO-251/TO-251S TO-251S2/TO-251S4 50 TO-252/TO-252D +150 °C Junction Temperature ТJ **Operating Temperature** -55 ~ +150 °C TOPR -55 ~ +150 °C Storage Temperature T_{STG}

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating : Pulse width limited by maximum junction temperature

3. L = 26.25mH, I_{AS} = 4A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

4. $I_{SD} \leq 4.4A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq BV_{DSS}$, Starting T_J = 25°C

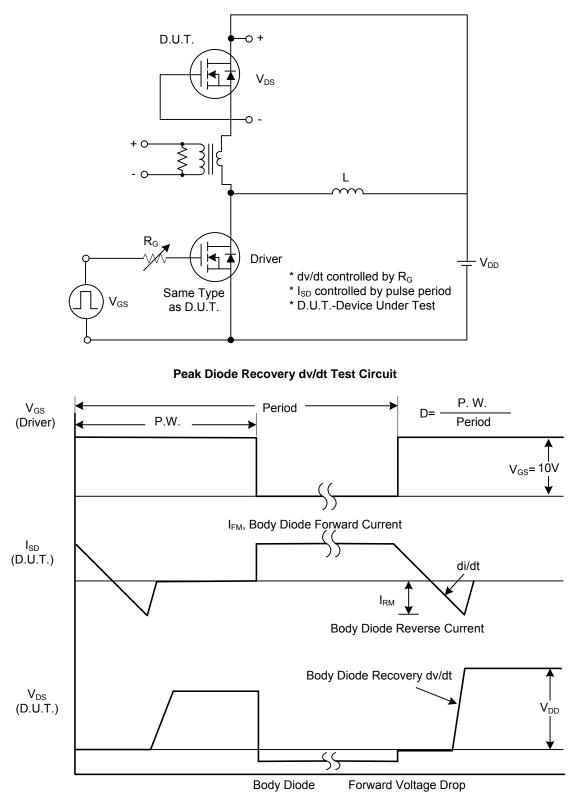
THERMAL DATA

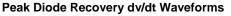
PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220/TO-220F TO-220F1/TO-220F2 TO-220F3		62.5	°C/W	
	TO-251/TO-251S TO-251S2/TO-251S4 TO-252/TO-252D	θ _{JA}	110	°C/W	
Junction to Case	TO-220		1.18	°C/W	
	TO-220F/TO-220F1 TO-220F3		3.47	°C/W	
	TO-220F2	θ _{JC}	3.4	°C/W	
	TO-251/TO-251S TO-251S2/TO-251S4 TO-252/TO-252D		2.50	°C/W	

4N60K-MT

Preliminary

■ ELECTRICAL CHARACTERISTICS (T_c =25°C, unless otherwise specified)

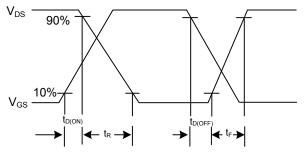

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} =0V, I _D =250µA	600			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =600V, V _{GS} =0V			10	μA
			V _{DS} =600V, V _{GS} =0V, T _C =125°C			10	μA
Gate-Source Leakage Current	Forward	1	V _{GS} =30V, V _{DS} =0V			100	nA
	Reverse	I _{GSS}	V _{GS} = -30V, V _{DS} =0V			-100	nA
Breakdown Voltage Temperature (Coefficient	$\bigtriangleup BV_{\text{DSS}} / \bigtriangleup T_J$	I _D =250µA,Referenced to 25°C		0.6		V/°C
ON CHARACTERISTICS					-		
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	3.0		5.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10 V, I _D =2.2A		1.79	2.5	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		CISS	V _{DS} = 25V, V _{GS} = 0V,		425	575	pF
Output Capacitance		C _{OSS}	f = 1MHz		55	75	pF
Reverse Transfer Capacitance		C _{RSS}			6	11	pF
SWITCHING CHARACTERISTICS	3						
Turn-On Delay Time		t _{D(ON)}			45		ns
Turn-On Rise Time		t _R	$V_{DD} = 30V, I_D = 0.5A,$		49		ns
Turn-Off Delay Time		t _{D(OFF)}	R _G = 25Ω (Note 1, 2)		80		ns
Turn-Off Fall Time		t⊨			43		ns
Total Gate Charge			V _{DS} = 50V,I _D = 1.3A,		20		nC
Gate-Source Charge		Q_{GS}	V_{GS} = 10V (Note 1, 2)		5.6		nC
Gate-Drain Charge		Q_{GD}			4.0		nC
SOURCE- DRAIN DIODE RATING	S AND CH	ARACTERIS	TICS				
Drain-Source Diode Forward Voltage		V_{SD}	$V_{GS} = 0V, I_{S} = 4.4A$			1.4	V
Maximum Continuous Drain-Source Diode		I _S				4.4	А
Forward Current						4.4	~
Maximum Pulsed Drain-Source Diode Forward Current		I _{SM}				17.6	А


Notes: 1. Pulse Test: Pulse width≤300µs, Duty cycle≤2%

2. Essentially independent of operating temperature

TEST CIRCUITS AND WAVEFORMS

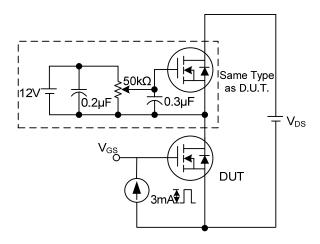
4N60K-MT


 V_{GS}

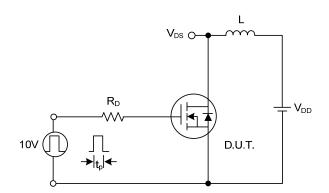
10V

Q_{GS}

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

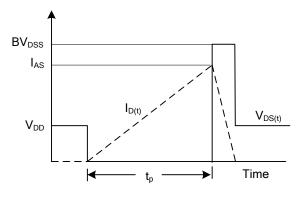


Switching Test Circuit



 Q_G

 Q_{GD}


Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit

Gate Charge Waveform

Charge

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

