PNP Silicon Epitaxial Planar Transistor

for switching and amplifier applications. Especially suitable for AF-driver stages and low power output stages.

The transistor is subdivided into three groups, G, H and I , according to its DC current gain. As complementary type the NPN transistor 9013 is recommended.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Collector Base Voltage	$-\mathrm{V}_{\text {CBO }}$	40	V
Collector Emitter Voltage	$-\mathrm{V}_{\text {CEO }}$	30	V
Emitter Base Voltage	$-\mathrm{V}_{\text {EBO }}$	5	V
Collector Current	$-\mathrm{I}_{\mathrm{C}}$	500	mA
Power Dissipation	$\mathrm{P}_{\text {tot }}$	625	mW
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Unit
DC Current Gain at $-\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$ Current Gain Group G at $-\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$	$\begin{aligned} & \mathrm{h}_{\mathrm{FE}}{ }^{\mathrm{h}_{\mathrm{EE}}} \\ & \mathrm{~h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \end{aligned}$	$\begin{gathered} 110 \\ 177 \\ 250 \\ 40 \\ \hline \end{gathered}$	$\begin{array}{r} 183 \\ 250 \\ 380 \\ \hline \end{array}$	
Collector Base Cutoff Current at $-V_{C B}=35 \mathrm{~V}$	$-_{\text {cво }}$	-	100	nA
Emitter Base Cutoff Current at $-V_{E B}=5 \mathrm{~V}$	$-_{\text {Ebo }}$	-	100	nA
Collector Base Breakdown Voltage at $-I_{C}=100 \mu \mathrm{~A}$	$-V_{\text {(BR)CBO }}$	40	-	V
Collector Emitter Breakdown Voltage at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$-\mathrm{V}_{\text {(BR)CEO }}$	30	-	V
Emitter Base Breakdown Voltage at $-I_{E}=100 \mu \mathrm{~A}$	$-V_{\text {(BR)EBO }}$	5	-	V
Collector Emitter Saturation Voltage at $-I_{C}=500 \mathrm{~mA},-I_{B}=50 \mathrm{~mA}$	$-\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	0.6	V
Base Emitter Saturation Voltage at $-\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA},-\mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$	$-V_{\text {BE(sat) }}$	-	1.2	V
Base Emitter Voltage at $-\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	$-V_{\text {bE }}$	-	1	V
Gain Bandwidth Product at $-\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$	f_{T}	100	-	MHz

Fig. $1 P_{\text {tot }}-T_{a}$

Fig. $3 I_{C}-V_{C E}$

Fig. $5 \mathbf{h}_{\mathrm{FE}}-\mathbf{I}_{\mathrm{C}}$

Fig. $2 I_{C}-V_{B E}$

Fig. $4 V_{C E(\text { sat })}-I_{C}$

Fig. $6 h_{\text {FE }}-I_{C}$

Г

