

74LVT573
3.3V Octal D-type transparent latch (3-State)

FEATURES

- Inputs and outputs on opposite side of package allow easy interface to microprocessors
- 3-State output buffers
- Common output enable
- TTL input and output switching levels
- Input and output interface capability to systems at 5V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500 mA per JEDEC Std 17
- Power-up 3-State
- Power-up reset
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

DESCRIPTION

The LVT573 is a high-performance BiCMOS product designed for VCC operation at 3.3 V . This device is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Enable (E) and Output Enable ($\overline{O E}$) control gates. The 74LVT573 has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.
The data on the D inputs are transferred to the latch outputs when the Latch Enable (E) input is High. The latch remains transparent to the data inputs while E is High, and stores the data that is present one setup time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable (OE) controls all eight 3-State buffers independent of the latch operation.
When $\overline{O E}$ is Low, the latched or transparent data appears at the outputs. When OE is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathbf{T}_{\text {amb }}=\mathbf{2 5} \mathbf{C} ; \mathrm{GND}=\mathbf{0 V}$	TYPICAL	UNIT
$\mathrm{t}_{\mathrm{PLH}}$	Propagation delay	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	2.5	n
$\mathrm{t}_{\mathrm{PHL}}$	Dn to Qn	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or 3.0 V	4	n
C_{IN}	Input capacitance	Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or 3.0 V	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output capacitance	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$.13	mA
$\mathrm{I}_{\mathrm{CCZ}}$	Total supply current			

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
20-Pin Plastic SOL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{LVT573} \mathrm{D}$	$74 \mathrm{LVT573} \mathrm{D}$	SOT163-1
20-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVT573 DB	$74 \mathrm{LVT573} \mathrm{DB}$	SOT339-1
20-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVT573 PW	74 LVT573PW DH	SOT360-1

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	OE	Output enable input (active-Low)
$2,3,4,5,6,7,8,9$	D0-D7	Data inputs
$19,18,17,16,15$, $14,13,12$	Q0-Q7	Data outputs
11	E	Enable input (active-High)
10	GND	Ground (OV)
20	VCC 2	Positive supply voltage

3.3V Octal D-type transparent latch (3-State)

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS			INTERNAL REGISTER	OUTPUTS	OPERATING MODE
OE	E	Dn		Q0-Q7	
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	H H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Enable and read register
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\downarrow	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Latch and read register
L	L	X	NC	NC	Hold
H	X	X	NC	Z	Disable outputs

$\mathrm{H}=$ High voltage level
$\mathrm{h}=$ High voltage level one set-up time prior to the High-to-Low E transition
$\mathrm{L}=$ Low voltage level
I = Low voltage level one set-up time prior to the High-to-Low E transition
$\mathrm{NC}=$ No change
X = Don't care
$Z=$ High impedance "off" state
$\downarrow=$ High-to-Low E transition
LOGIC DIAGRAM

3.3V Octal D-type transparent latch (3-State)

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +4.6	V
I_{K}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage 3		-0.5 to +7.0	V
$\mathrm{I}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	Output in Off or High state	-0.5 to +7.0	V
$\mathrm{I}_{\text {OUT }}$	DC output current	Output in Low state	128	mA
	Storage temperature range	Output in High state	-64	

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	2.7	3.6	V
V_{1}	Input voltage	0	5.5	V
V_{IH}	High-level input voltage	2.0		V
$\mathrm{V}_{\text {IL }}$	Input voltage		0.8	V
IOH	High-level output current		-32	mA
lol	Low-level output current		32	mA
	Low-level output current; current duty cycle $\leq 50 \%$, f $\geq 1 \mathrm{kHz}$		64	
$\Delta t / \Delta v$	Input transition rise or fall rate; outputs enabled		10	ns/V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

3.3V Octal D-type transparent latch (3-State)

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS			UNIT
				Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
				MIN	TYP ${ }^{1}$	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{IK}}=-18 \mathrm{~mA}$			-0.9	-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.7$ to $3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{cc}}-0.2$	$\mathrm{V}_{\mathrm{cc}}-0.1$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$		2.4	2.5		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA}$		2.0	2.2		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOL}=100 \mu \mathrm{~A}$			0.1	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.3	0.5	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.25	0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$			0.3	0.5	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$			0.4	0.55	
$\mathrm{V}_{\mathrm{RST}}$	Power-up output low voltage ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}			0.13	0.55	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=0$ or $3.6 \mathrm{~V} ; \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	Control pins		± 0.1	± 1	
		$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{C C}$	Data pins ${ }^{4}$		0.1	1	
		$V_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0$			-1	-5	
IOFF	Output off current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V			1	± 100	$\mu \mathrm{A}$
Imold	Bus Hold current A inputs ${ }^{7}$	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V} ; \mathrm{V}_{1}=0.8 \mathrm{~V}$		75	150		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$		-75	-150		
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		± 500			
$l_{\text {EX }}$	Current into an output in the High state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$			60	125	$\mu \mathrm{A}$
IPU/PD	Power up/down 3-State output current ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{OE} / \mathrm{OE}=\text { Don't care } \end{aligned}$			1	± 100	$\mu \mathrm{A}$
lozh	3-State output High current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$			1	5	$\mu \mathrm{A}$
lozL	3-State output Low current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}			-1	-5	
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l} \mathrm{l}=0$			0.13	0.19	mA
$\mathrm{I}_{\text {CCL }}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \text {; Outputs Low, } \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\mathrm{O}}=0$			3	12	
ICCZ		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs Disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0^{5}$			0.13	0.19	
$\Delta_{\text {l }} \mathrm{C}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V ; One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND			0.1	0.2	mA

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND
3. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{Tamb}=25^{\circ} \mathrm{C}$ only
4. Unused pins at V_{CC} or GND.
5. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
6. $I_{C C z}$ is measured with outputs pulled to V_{Cc} or $G N D$.
7. This is the bus hold overdrive current required to force the input to the opposite logic state.

3.3V Octal D-type transparent latch (3-State)

AC CHARACTERISTICS
$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS				UNIT
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			MIN	TYP ${ }^{1}$	MAX	MAX	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Dn to Qn	2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.2 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay E to Qn	1	$\begin{aligned} & 1.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 7.2 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{tpZH}^{\mathrm{t}_{\text {PZL }}} \end{aligned}$	Output enable time to High and Low level	$\begin{aligned} & 4 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 2.8 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & 6.6 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \mathrm{t}_{\mathrm{pLLZ}} \end{aligned}$	Output disable time from High and Low level	$\begin{aligned} & 4 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 5.7 \\ & 4.6 \end{aligned}$	$\begin{aligned} & \hline 6.7 \\ & 5.1 \end{aligned}$	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC SETUP REQUIREMENTS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			MIN	MAX	MIN	
$\begin{aligned} & \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low, Dn to E	3	0.7 0.7		0.6 0.6	ns
$\begin{aligned} & \mathrm{T}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{T}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low, Dn to E	3	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$		1.8 1.8	ns
$\mathrm{T}_{\mathrm{W}}(\mathrm{H})$	E pulse width High	1	3.3		3.3	ns

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to 2.7 V

Waveform 1. Propagation Delay, Enable to Output, and Enable Pulse Width

Waveform 2. Propagation Delay for Data to Outputs

Waveform 3. Data Setup and Hold Times

3.3V Octal D-type transparent latch (3-State)

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORM

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT137-1	075E05	MS-013AD			$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

3.3V Octal D-type transparent latch (3-State)

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	W	y	$Z^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	0.8 0.4	$8^{\circ}{ }^{\circ}$

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT340-1		MO-150AG		($\begin{aligned} & 93-09-08 \\ & 95-02-04 \end{aligned}$

3.3V Octal D-type transparent latch (3-State)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	1.10	0.15	0.95	0.25	0.30	0.2	7.9	4.5	0.65	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.5	8°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT355-1		MO-153AD			$\begin{gathered} \hline 93-06-16 \\ 95-02-04 \end{gathered}$

NOTES

3.3V Octal D-type transparent latch (3-State)

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

