

MH187 Specifications General-Purpose Hall Effect Latch

MH187 Hall-effect sensor is a temperature stable, stress-resistant latch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

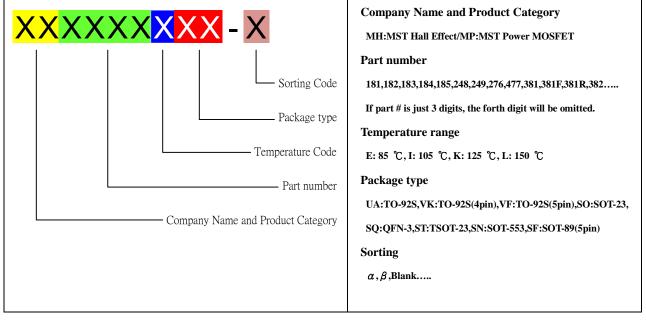
MH187 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, ESD circuit protection, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output latches on, and only switches off when a north polarity field of sufficient strength is present.

MH187 is rated for operation between the ambient temperatures -40° C and 85° C for the E temperature range, and -40° C to 125° C for the K temperature range. The three package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), SQ is an QFN2020-3(0.5 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

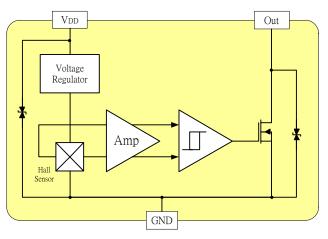
The UA package SO type and SQ type are Halogen Free package. All of them have been verified by third party Lab.

Features and Benefits


- Chopper stabilized amplifier stage
- Optimized for BLDC motor applications
- Reliable and low shifting on high Temp condition
- Good ESD Protection
- 100% tested at 125 °C for K.
- 100% tested at 150 °C for L.
- Custom sensitivity / Temperature selection are available.

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability


Ordering Information

Part No.	Temperature Suffix	Package Type
MH187LUA	L $(-40^{\circ}C \text{ to } + 150^{\circ}C)$	UA (TO-92S)
MH187KUA	K (-40°C to + 125°C)	UA (TO-92S)
MH187KSO	K $(-40^{\circ}C \text{ to } + 125^{\circ}C)$	SO (SOT-23)
MH187KSQ	K $(-40^{\circ}C \text{ to } + 125^{\circ}C)$	SQ (QFN2020-3)
MH187EUA	E (-40°C to + 85°C)	UA (TO-92S)
MH187ESO	E (-40°C to + 85°C)	SO (SOT-23)
MH187ESQ	E $(-40^{\circ}C \text{ to } + 85^{\circ}C)$	SQ (QFN2020-3)

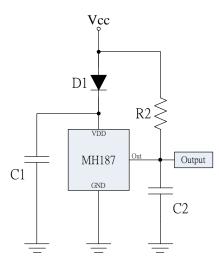
KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

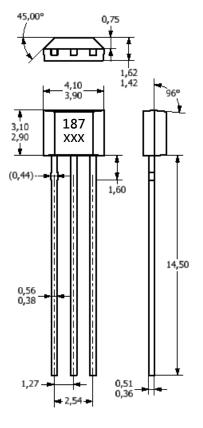
Characteristics			Values	Unit	
Supply voltage, (VDD)			28	V	
Output Voltage,(Vout)			28	V	
Reverse voltage, (VDD) (VOUT)			-0.3	V	
Magnetic flux density			Unlimited	Gauss	
Output current, (<i>Iour</i>)		50	mA		
Operating Temperature Range, (Ta)		"E" version	-40 to +85	°C	
		"K" version	-40 to +125	°C	
		"L" version	-40 to +150	°C	
Storage temperature range, (<i>Ts</i>)			-65 to +175	°C	
Maximum Junction Temp,(<i>Tj</i>)			175	°C	
The survey I Desci stances	$(heta_{ja})$	UA / SO / SQ	206 / 543 / 543	°C/W	
Thermal Resistance	$(heta_{jc})$ UA / SO / SQ		148 / 410 / 410	°C/W	
Package Power Dissipation, (P_D) UA / SO / SQ		728 / 543 / 543	mW		

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.


Electrical Specifications

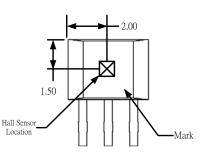
Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	3.5		26.0	V
Supply Current,(<i>I</i> _{DD})	В<Вор			5.0	mA
Output Saturation Voltage, (Vsat)	IOUT = $10 \text{ mA}, \text{B} > \text{B}_{\text{OP}}$			400.0	mV
Output Leakage Current, (Ioff)	IOFF $B < B_{RP}$, $V_{OUT} = 12V$			15.0	uA
Output Rise Time, (<i>T</i> _R)	RL=820Ω, CL=20pF			0.45	uS
Output Fall Time, (<i>T_F</i>)	RL=820 Ω ; CL =20pF			0.45	uS
Electro-Static Discharge	HBM	4			KV
Operate Point,(Bop)		15		60	Gauss
Release Point,(<i>B</i> _{<i>RP</i>})		-60		-15	Gauss
Hysteresis,(BHYS)			80		Gauss

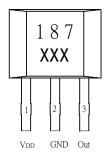
DC Operating Parameters : $T_A = +25 \degree C$, $V_{DD} = 12V$


Typical application circuit

D1 : 1N4148 or 100Ω C1 : 1000PF C2 : 15PF R2 : 10KΩ

Sensor Location, package dimension and marking MH187 Package


UA Package


NOTES:

- 1).Controlling dimension: mm
- 2).Leads must be free of flash
 - and plating voids
- Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:
 - Pin 1VDDPin 2GNDPin 3Output

Hall Chip location

Output Pin Assignment (Top view)

3,000

1,25 0,90

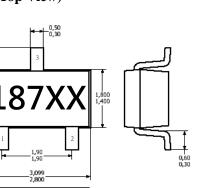
MH187 Specifications General-Purpose Hall Effect Latch

Hall Sen

Hall Plate Chip Location

(Bottom view)

3


0.80

1.45

わ 1

SO Package

(Top View)


0,812 0,637

0,15

NOTES:

- 1. PINOUT (See Top View at left :)
 - $Pin \ 1 \qquad V_{DD}$
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

SQ Package

NOTES:

1. PINOUT (See Top View

at left)

- Pin 1 VDD
- Pin 2 Output
- Pin 3 GND
- 2. Controlling dimension: mm;
- Chip rubbing will be 10mil maximum;
- 4. Chip must be in PKG. center.

Hall Plate Chip Location

(Top view)