

FEATURES

- 8.0V ~ 19.0V power supply.
- Single-Ended input.
- High output power capability: (Test @1KHz.THD+N=10%.)

Load	Without heat-sink						
LUau	<u>4Ω</u>	<u>Ω8</u>					
SEx4	4.5Wx4/12V	2.6Wx4/12V					
	10Wx4/19V	5.9Wx4/19V					
BTLx2	16Wx2/12V	9.5Wx2/12V					
	10002/120	22Wx2/19V					
2.1CH	6Wx2+21W/4Ω/1	14V					

Load	Without heat-sink				
LUau	<u>2Ω</u>	<u>4Ω</u>			
PBTLx1	30Wx1/12V	18Wx1/12V			
	40Wx1/14V	40Wx1/19V			

Load	With heat-sink					
LUau	<u>4Ω</u>	<u>Ω8</u>				
SEx4	10Wx4/19V	5.9Wx4/19V				
BTLx2	27Wx2/16V	22Wx2/19V				
2.1CH	8Wx2+27W/4Ω/16V					

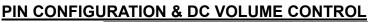
Load	With heat-sink				
	<u>2Ω</u>	<u>4Ω</u>			
PBTLx1	50Wx1/16V	40Wx1/19V			

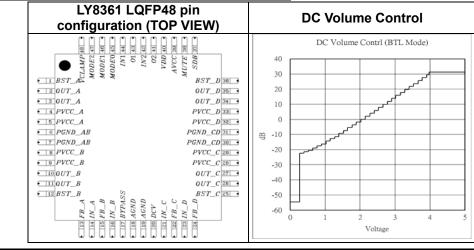
- 4 kinds of output type options:
- 4xSE \ 2xBTL \ 2.1Ch.(SEx2+BTLx1) \ 1xPBTL
- Include High/Low pass filter OP.

- DC volume control with 32 steps.
- Over-Heat protection with automatic recovery.

LY8361

- Under-voltage and Over-voltage detection.
- Short protection with automatic recovery.
- Mute function selectable.
- Lead free and green package available. (RoHS Compliant)
- Špace saving package : 48-pin LQFP 7*7 package.


GENERAL DESCRIPTION


The LY8361 is a high power and high efficiency class D audio power amplifier with DC volume control. It can to work either in dual bridge \ quad single-ended output \ 2.1 channel and PBTL mono application configuration.

The device features a low noise and a low power consumption in shutdown mode and support thermal shutdown protection. It also utilizes circuitry to reduce low noise during device turn-on and off. The outputs are also fully protected against faults with short-circuit protection (output-to-output pin so output pin to VDD and output pin to GND) and thermal protection as well as over-voltage, under-voltage. The short-circuit protection and thermal protection include an auto-recovery feature.

APPLICATION

- Sound-bar Home Theater.
- Powered Speakers.
- Music instrument devices.
- DVD players, Game machines.
- Multimedia TFT LCD TVs / Monitors.

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E. Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

PIN DESCRIPTION

SYMBOL	Pin No.	DESCRIPTION			
BST_A	1	Bootstrap I/O for A channel.			
OUT_A	2/3	Speaker output for A channel.(SE Mode=VOUT+) (BTL Mode=Left channel VOUT+)			
PVCC	4/5/8/9/28/29/32/33	Power supply of $A \cdot B \cdot C \cdot D$ channel.			
PGND	6/7/30/31	Ground of A 丶 B 丶 C 丶 D channel.			
OUT_B	10/11	Speaker output for B channel. (SE Mode=VOUT+) (BTL Mode=Left channel VOUT-)			
BST_B	12	Bootstrap I/O for B channel.			
FB_A	13	A-Channel Feedback. Connect feedback resistor between FB_A and IN_A to set amplifier gain.			
IN_A	14	Input of A channel.			
FB_B	15	B-Channel Feedback. Connect feedback resistor between FB_B and IN_B to set amplifier gain.			
IN_B	16	Input of B channel.			
BYPASS	17	Bypass pin.			
AGND	18/19	Analog GND.			
DCV	20	DC volume control.			
IN_C	21	Input of C channel.			
FB_C	22	C-Channel Feedback. Connect feedback resistor between FB_C and IN_C to set amplifier gain.			
IN_D	23	Input of D channel.			
FB_D	24	D-Channel Feedback. Connect feedback resistor between FB_D and IN_D to set amplifier gain.			
BST_C	25	Bootstrap I/O for C channel.			
OUT_C	26/27	Speaker output for C channel. (SE Mode=VOUT+) (BTL Mode=Right channel VOUT+)			
OUT_D	34/35	Speaker output for D channel. (SE Mode=VOUT+) (BTL Mode=Left channel VOUT-)			
BST_D	36	Bootstrap I/O for D channel.			
SDB	37	Shutdown control pin.(When LOW level in shutdown mode).			
MUTE	38	Mute signal for quick enable/disable of output. (When High level in mute mode).			
AVCC	39	Analog Power supply.			
VDD	40	Regulator output terminal.(with external capacitor)			
O2	41	Pure OP Output 2.			
IN2	42	Pure OP Negative input 2.			
O1	43	Pure OP Output 1.			
IN1	44	Pure OP Negative input 1			
Mode 0/1/2	45/46/47	Output mode selectable.			
VCLAMP	48	Internally generated voltage power supply for all channel bootstrap capacitors.			

Lyontek Inc. reserves the rights to change the specifications and products without notice.

2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan

TEL: 886-3-6668838 FAX: 886-3-6668836

ORDERING INFORMATION

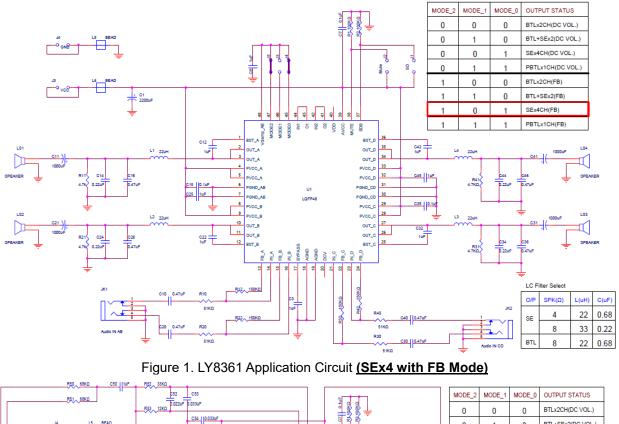
Ordering	Packing	Speaker	Pin/	Output Power	Input	Output
Code	Type	Channels	Package	(THD+N=10%) ^{*3}	Type	Type
LY8361F	Tray	Multi channel	LQFP48	Without heat-sink 10Wx4/4Ω/SE @19V 5.9Wx4/8Ω//SE @19V 16Wx2/4Ω/BTL @12V 22Wx2/8Ω/BTL @19V 40Wx1/2Ω/PBTL @14V 40Wx1/4Ω/PBTL @19V 6Wx2+21W/4Ω/2.1CH @14V With heat-sink 10Wx4/4Ω/SE @19V 5.9Wx4/8Ω/SE @19V 27Wx2/4Ω/BTL @16V 22Wx2/8Ω/BTL @19V 50Wx1/2Ω/PBTL @16V 40Wx1/4Ω/PBTL @19V 50Wx1/2Ω/PBTL @16V 40Wx1/4Ω/PBTL @19V 50Wx1/2Ω/PBTL @16V 40Wx1/4Ω/PBTL @16V	SE	4xSE, 2xBTL, 1xPBT, 2.1CH (SEx2+ BTLx1)

(*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink.

But when total output power \geq 40W, the device must be use external heat sink.

DEMO BOARD ORDERING INFORMATION

	Demo Board Ordering Code		Input Type	Speaker Output Channels	Notes
LY8361F-DB1(FB)	Feedback			PBTL mode	
LY8361F-DB1(DC)	DC volume control			(Mono)	
LY8361F-DB2(FB)	Feedback			BTLx2 mode	
LY8361F-DB2(DC)	DC volume control	LQFP48	SE	(Stereo)	
LY8361F-DB3(FB)	Feedback	LQI F40	5L	2.1CH mode	
LY8361F-DB3(DC)	DC volume control			(SEx2+BTLx1)	
LY8361F-DB4(FB)	Feedback			OF ut mode	
LY8361F-DB4(DC)	DC volume control			SEx4 mode	


Lyontek Inc. reserves the rights to change the specifications and products without notice.

2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan

TEL: 886-3-6668838 FAX: 886-3-6668836

TYPICAL APPLICATION CIRCUIT-1 (FB Mode)

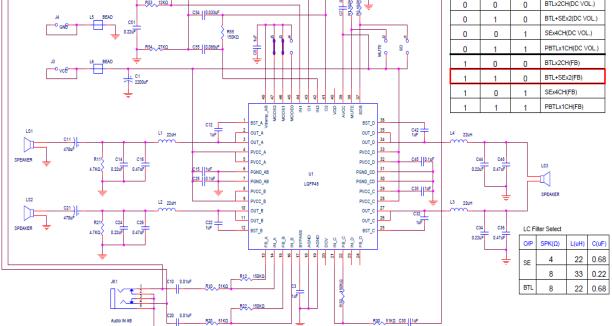


Figure 2. LY8361 Application Circuit <u>(SEx2 +BTLx1(2.1CH) with FB Mode)</u> (*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink. But when total output power ≥40W, the device must be use external heat sink.

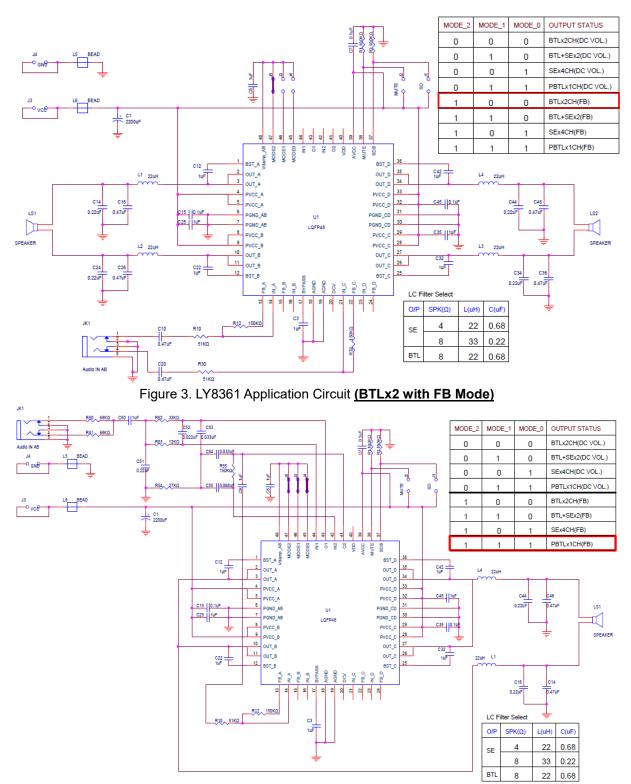


Figure 4. LY8361 Application Circuit (PBTLx1 with FB Mode)

(*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink. But when total output power ≥40W, the device must be use external heat sink.

TYPICAL APPLICATION CIRCUIT-2 (DC Volume Mode)

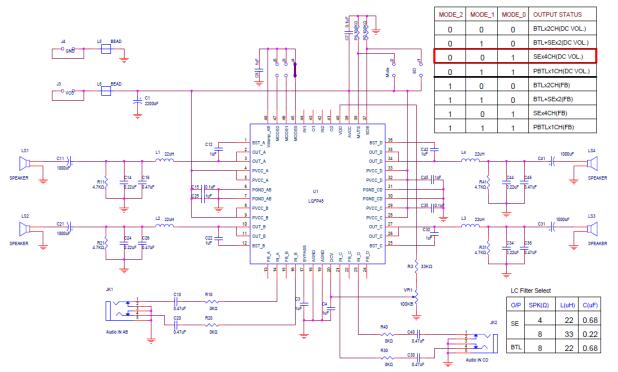


Figure 5. LY8361 Application Circuit (SEx4 with DC Volume Mode)

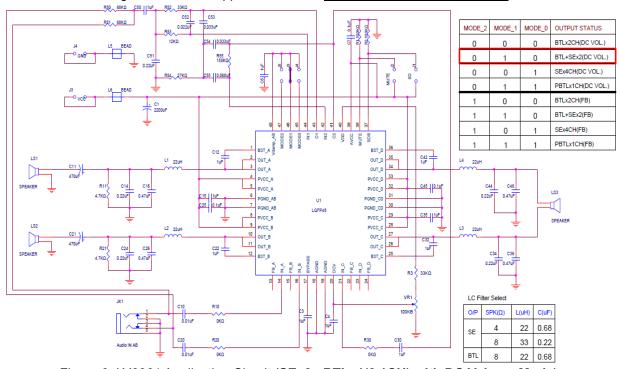
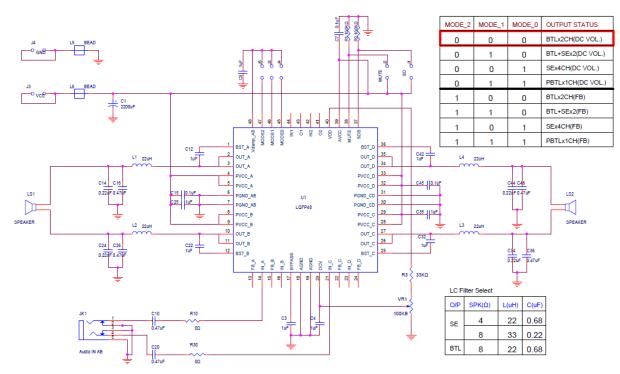



Figure 6. LY8361 Application Circuit <u>(SEx2 +BTLx1(2.1CH) with DC Volume Mode)</u> (*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink. But when total output power ≧40W, the device must be use external heat sink.

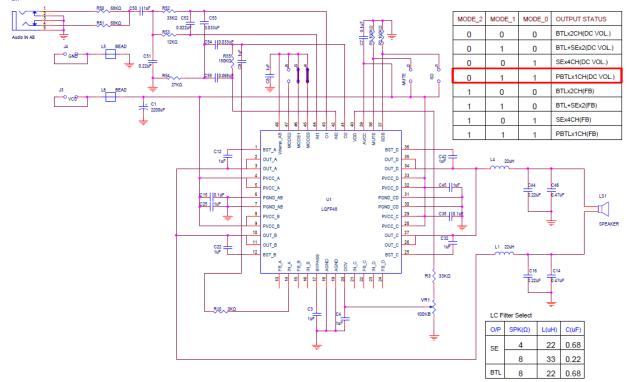


Figure 8. LY8361 Application Circuit (PBTL with DC Volume Mode)

(*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink. But when total output power ≥40W, the device must be use external heat sink.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	PVCC, AVCC	26.0	V
Interface pin voltage	SD, Mute	-0.3V to PVCC +0.3V	V
Audio input pin voltage	IN_A/B/C/D	-0.3V to 5.0V	V
Operating Temperature	TA	-40 to 85 (I grade)	°C
Storage Temperature	Тѕтс	-65 to 150	°C
ESD Susceptibility	Vesd	2000	V
Junction Temperature	Тјмах	150	°C
Soldering Temperature (under 10 sec)	TSOLDER	260	°C

ELECTRICAL CHARACTERISTICS (1) (T_A = 25℃)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. *2	MAX.	UNIT
Power supply voltage	PVCC		8.0	-	19.0	
High-level input voltage	Vsdih Vmuluih	PVCC=8~19V	2.0	-	PVCC	v
Low-level input voltage	Vsdil Vmuluil	PVCC=8~19V	0	-	0.3	
Quiescent Current		PVCC=12V, SD≧2.0V, MUTE=0V, No Load	-	35	-	
Quiescent Current (in mute mode)	la Ia	PVCC=12V, MUTE≧0.8V, No Load	-	35	-	mA
Shutdown Current	Isd	PVCC=12V,Vsнutdown≦0.8V, No Load	-	0.2	-	
Drain-source on-state resistance	Rdson	PVCC=12V, lo=1A	CC=12V, lo=1A - 360 -		-	mΩ
Bypass output voltage	VBYPASS	No Load	-	PVCC/6	-	V
Output offset voltage	Vos	PVCC=12V, Vi=0V, Av=10, BTL mode	-	70	-	mV

■ OPERATING CHARACTERISTICS (2)(TA = 25°C)

PARAMETER	SYMBOL	TEST CONDITIO	MIN.	TYP. *2	MAX.	UNIT	
Supply ripple rejection	Ksvr	BTL mode, PVCC=12V, Av=10,	217Hz Input=GND	-	-46	-	dB
Supply ripple rejection	r.svi	Vripple = 200mVpp at 1kHz, R∟=4Ω,	217Hz Input=Floating	-	-80	-	uБ
		SE Mode,	A weighting	-	587	-	
		PVCC=12V, Av=10, f = 20 Hz to 20 kHz,RL=4Ω,	Without A weighting	-	629	-	
		BTL Mode,	A weighting	-	302	-	
Output voltage noise	Vn	PVCC=12V, Av=10, f = 20 Hz to 20 kHz,RL=4Ω,	Without A weighting	-	384	-	uV
		PBTL Mode,	A weighting	-	356	-	
		PVCC=12V, Av=10, f = 20 Hz to 20 kHz,RL=4Ω,	Without A weighting	-	505	-	
		<u>SE mode,</u>	A weighting	-	77.5	-	
		PVCC=12V, Av=10, RL=4Ω, Max output THD+N<1%,	Without A weighting	-	76.8	-	
		BTL mode,	A weighting	-	88.4	-	
Signal-to-noise ratio	SNR	PVCC=12V, Av=10, RL=4Ω, Max output THD+N<1%,	Without A weighting	-	86.3	-	dB
		PBTL mode,	A weighting	-	87.6	-	
		PVCC=12V, Av=10, RL=4Ω, Max output THD+N<1%,	Without A weighting	-	84.6	-	

(*2) Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at PVCC = PVCC(TYP.) and $T_A = 25^{\circ}C$

■ OPERATING CHARACTERISTICS (3)(TA = 25°C)

PARAMETER	SYMBOL	TEST CONDITIC	DN .	MIN.	TYP. *2	MAX.	UNIT	
		SE modo	A ch. to B ch.	-	-61.5	-		
		<u>SE mode</u> , PVCC=12V, Av=10, RL=4Ω,	B ch. to A ch.	-	-61	-		
		$P_{VCC} = 12^{V}$, $A_{V} = 10$, $R_{L} = 4\Omega$, $P_{0} = 0.25W$,	C ch. to D ch.	-	-66.5	-		
Crosstalk	Cs	F0 = 0.23VV,	D ch. to C ch.	-	-64	-	dB	
		<u>BTL mode,</u>	A ch. to C ch.	-	-78	-		
		PVCC=12V, Av=10, RL=4Ω, Po = 0.25W,	C ch. to A ch.	-	77			
Oscillator frequency	fosc			-	312	-	kHz	
Thermal shutdown	Tsp	Shutdown temp.		-	180	-	°C	
temperature	150	Restore temp.			160	-	C	
Mute attenuation		VDD=12V, Po=1W		-	-91	-	dB	
Start-up time from shutdown		PVCC=19V, C _{bypass} =1µF.		-	510	-		
	Zı	PVCC=12V, C _{bypass} =1µF.			440	-	ms	
		PVCC=8V, C _{bypass} =1µF.				370	-	

(*2) Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at PVCC = PVCC(TYP.) and TA = 25°C

2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan

TEL: 886-3-6668838 FAX: 886-3-6668836

■ OPERATING CHARACTERISTICS (4)(TA = 25°C)

SE Mode Output Power									Unit	=W	
PARAM -ETER	SYMBOL	TEST	R∟=8Ω					R∟=	=4Ω		
		CONDI-	1 Cha	nnel	4 Cha	innel	1 Cha	nnel	4 Cha	nnel	
	TION	10% ^{*2}	1% ^{*2}	10% ^{*2}	1% ^{*2}	10% *2	1% ^{*2}	10% *2	1% ^{*2}		
		8V	1.2	0.9	1.1	0.9	2.1	1.8	2	1.1	
Output-		10V	1.8	1.5	1.8	1.4	3.3	2.7	3	2.4	
power	Po	12V	2.6	2.1	2.6	2.1	4.8	4	4.5	3.7	
power		14V	3.5	2.8	3.5	2.8	6.6	5.4	6	5	
		14.4V	3.8	3	3.7	3	7	5.7	6.5	5.1	
				16V	4.7	3.8	4.6	3.7	8.6	6.9	8
		19V	6	4.7	5.9	4.6	11	8.9	10	8.1	

BTL Mode Output Power										=W								
PARAM -ETER	SYMBOL	TEST		R∟	=8Ω		R∟=4Ω											
		CONDI- TION	1 Cha	nnel	2 Cha	annel	1 Cha	nnel	2 Cha	annel								
		HON	10% ^{*2}	1% ^{*2}	10% ^{*2}	1% ^{*2}	10% ^{*2}	1% ^{*2}	10% ^{*2}	1% ^{*2}								
	Po	8V	4	3.5	4	3.5	7.5	6	7	5								
			10V	6.5	5	6.5	5	11.5	9.5	11	9							
Output-		12V	9.5	8	9.5	8	16.5	13	16	12								
power			14V	13	10.5	13	10	22 ^{*3}	18 ^{*3}	21 ^{*3}	17 ^{*3}							
												14.4V	14	11.5	14	11	24 ^{*3}	19 ^{*3}
		16V	17	14	17	14	29 ^{*3}	23 ^{*3}	27 ^{*3}	20 ^{*3}								
		_			19V	22 ^{*3}	17	22 ^{*3}	17	36 ^{*3}	29 ^{*3}	33 ^{*3}	27 ^{*3}					

(*2) Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at PVCC = PVCC(TYP.) and $T_A = 25^{\circ}C$

(*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink. But when total output power $\geq 40W$, the device must be use external heat sink.

Output Power per channel (Output Type=PBTL mode) Unit=W										nit=W
PARAMETER	SYMBOL	TEOT	R∟=	-8Ω	R∟=	-4Ω	R∟=	3Ω	R∟=	2Ω
	Po	TEST CONDITION	10% *2	1% *2	10% *2	1% *2	10% *2	1% *2	10% *2	1% *2
		8V	4.5	3.5	8	6.5	10	8	13	10
		10V	7	5.5	12.5	10	16	12.5	21	16.5
Output-power		12V	10	8	18	14.5	23	18.5	30	23
		14V	14	11	25	20	32	25	40	31
		14.4V	15	12	26	21	33.5	27	42	31
		16V	18	15	32.5	26	41	34	50 ^{*3}	33
		19V	23	18.5	40	33.5	53 ^{*3}	41	64 ^{*3}	35

(*2) Typical values are included for reference only and are not guaranteed or tested.

Typical values are measured at PVCC = PVCC(TYP.) and $T_A = 25^{\circ}C$

(*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink. But when total output power \geq 40W, the device must be use external heat sink.

2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan

TEL: 886-3-6668838 FAX: 886-3-6668836

TYPICAL PERFORMANCE CHARACTERISTICS

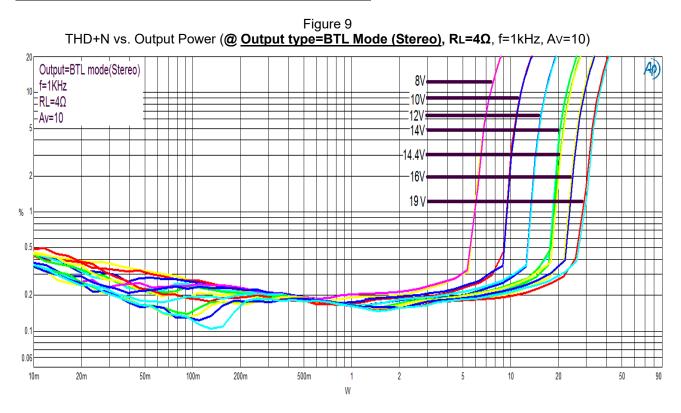
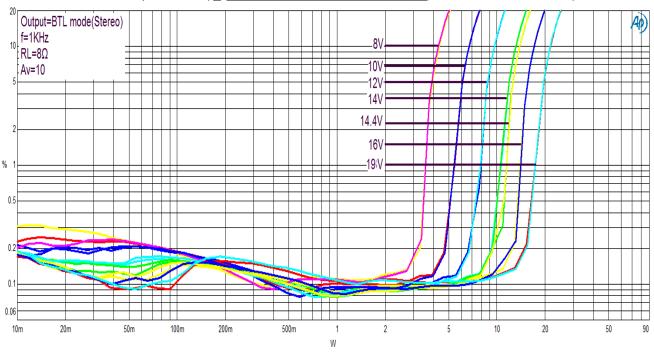



Figure 10 THD+N vs. Output Power (@ <u>Output type=BTL Mode (Stereo)</u>, RL=8Ω, f=1kHz, Av=10)

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

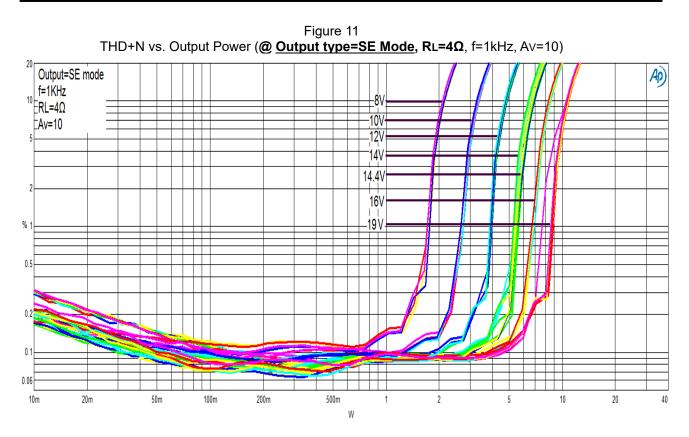
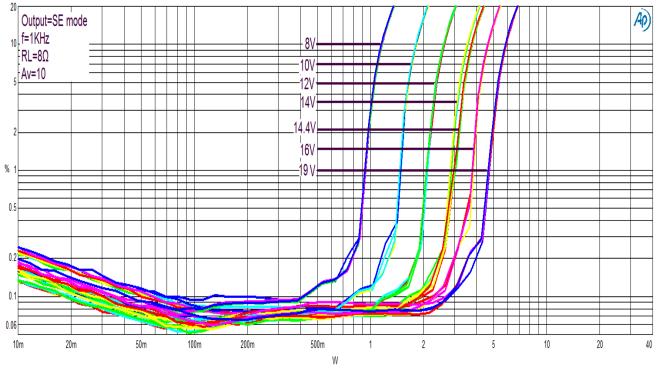



Figure 12 THD+N vs. Output Power (@ <u>Output type=SE Mode</u>, RL=8Ω, f=1kHz, Av=10)

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

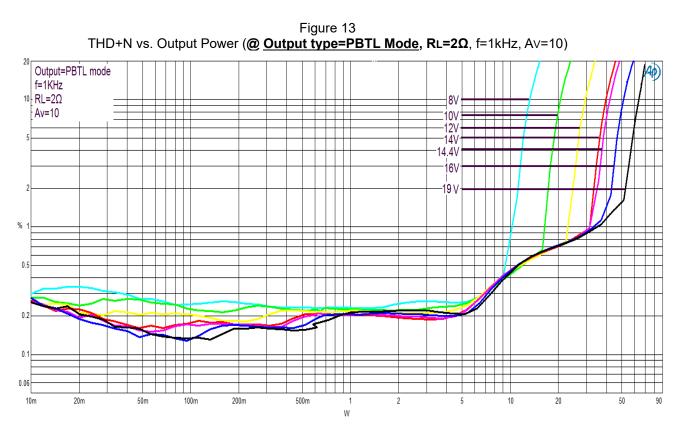
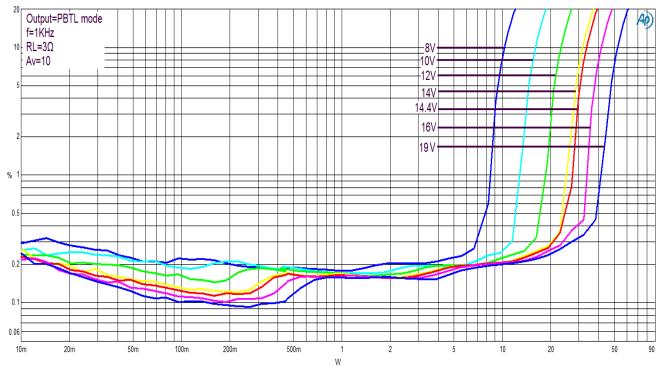



Figure 14 THD+N vs. Output Power (@ <u>Output type=PBTL Mode</u>, RL=3Ω, f=1kHz, Av=10)

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

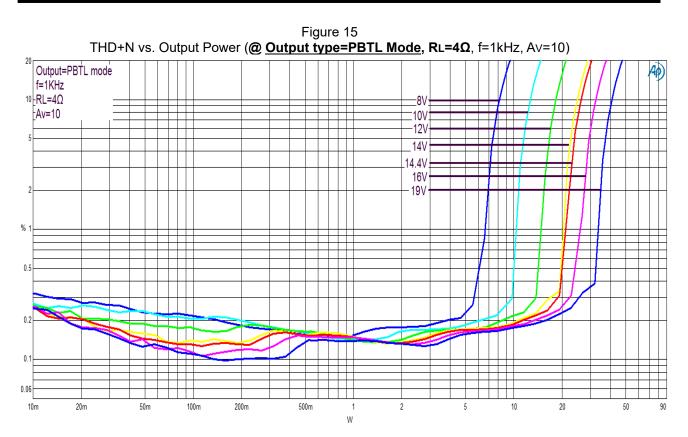
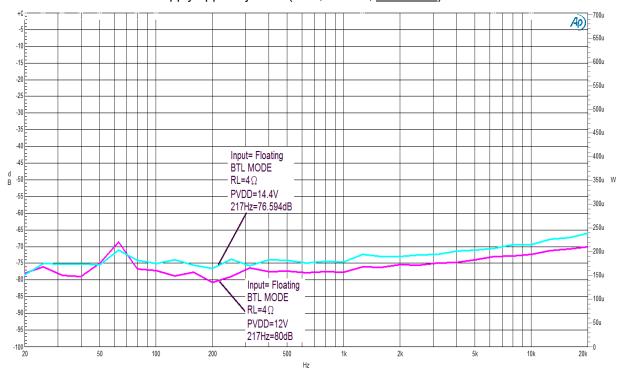
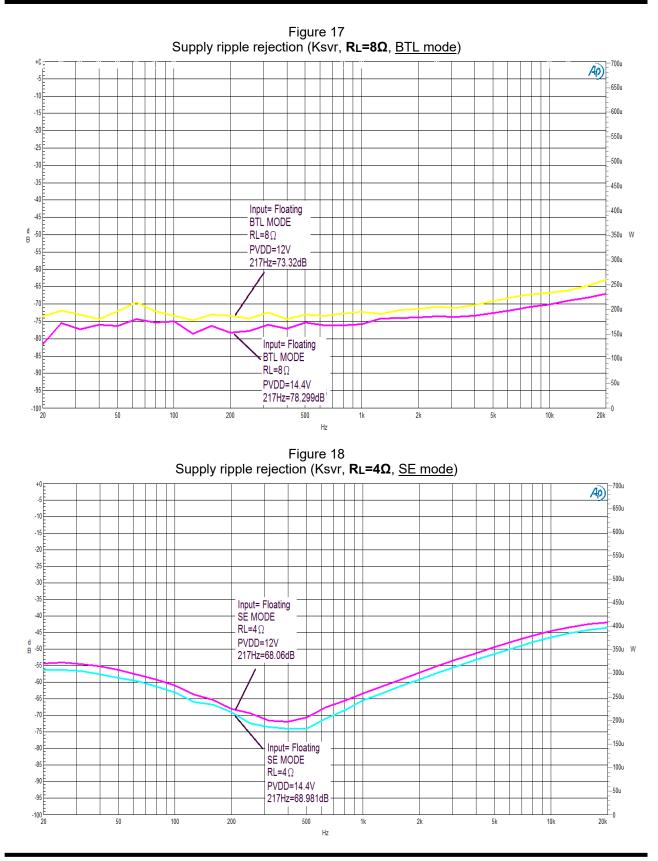
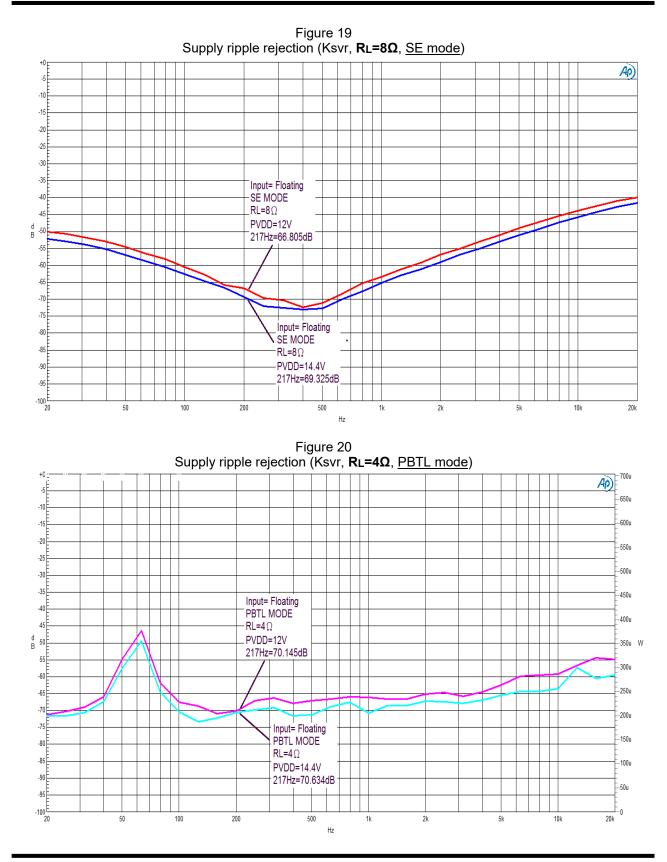
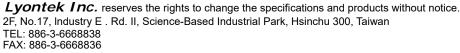
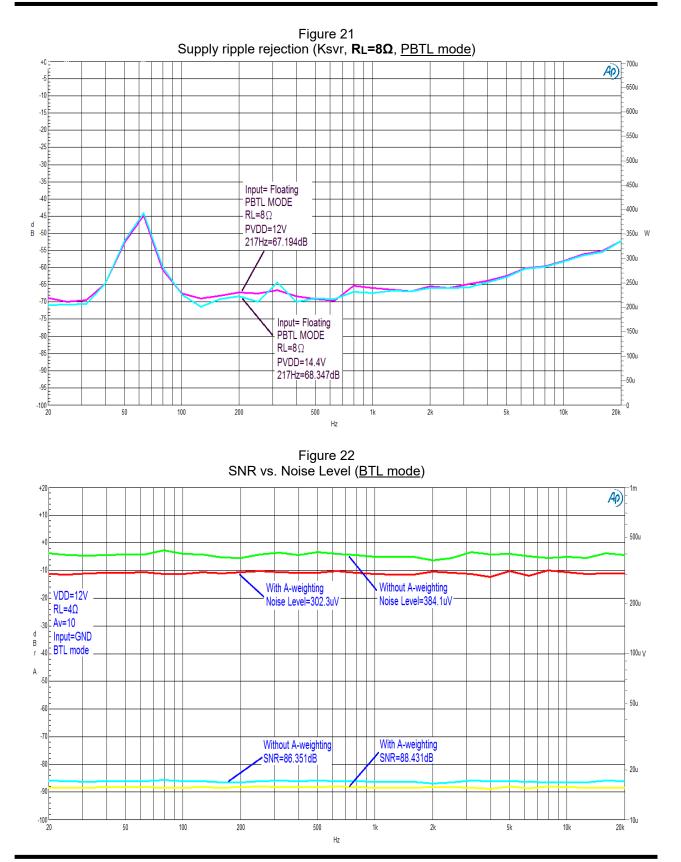
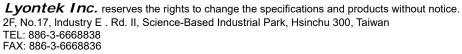




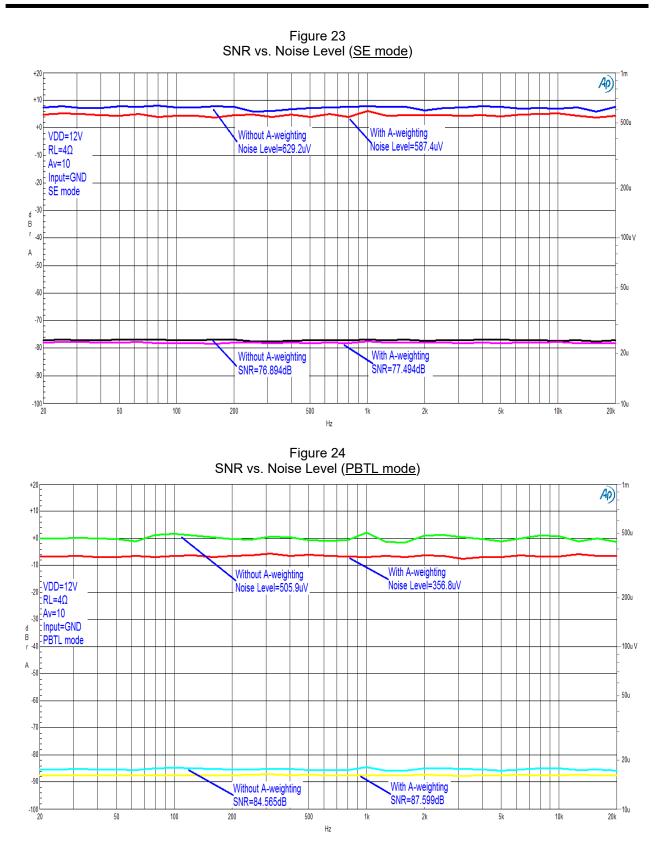
Figure 16 Supply ripple rejection (Ksvr, **RL=4Ω**, <u>BTL mode</u>)

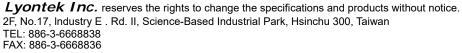


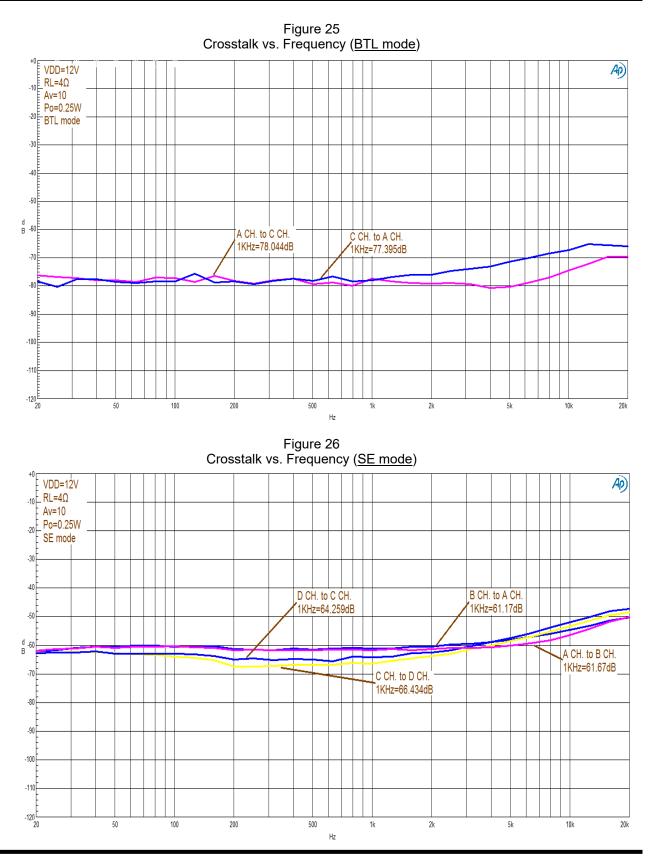

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

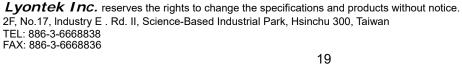


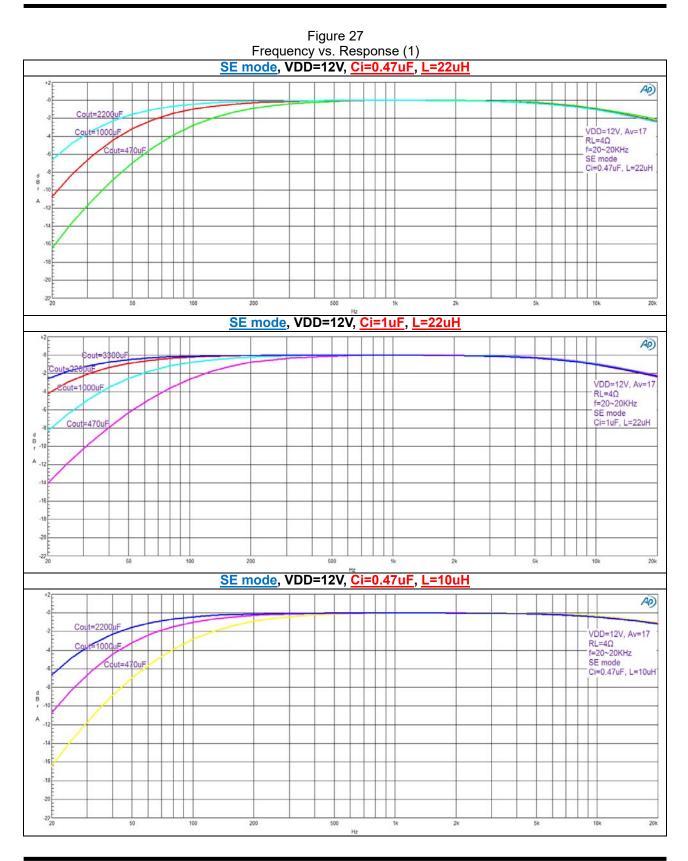


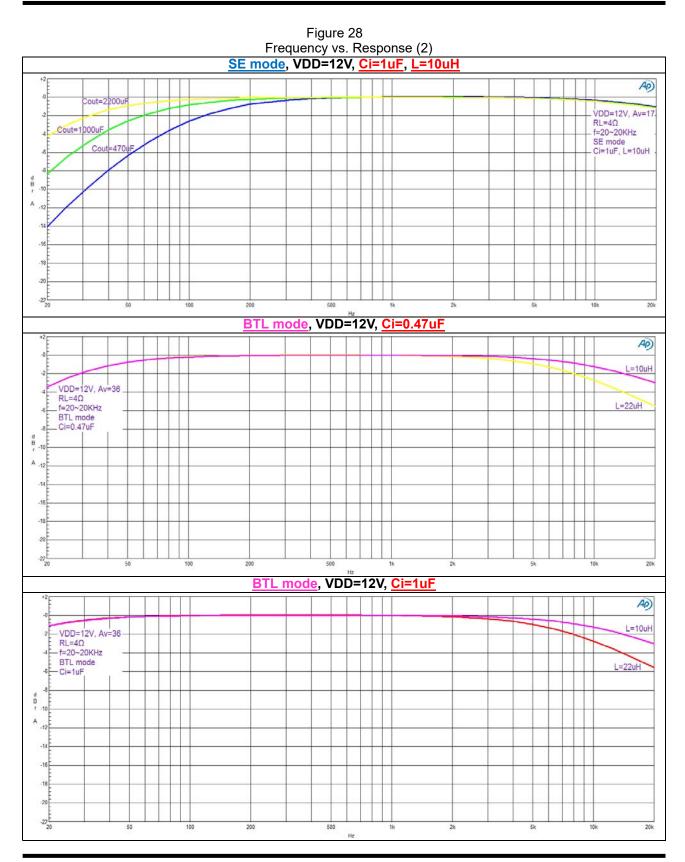


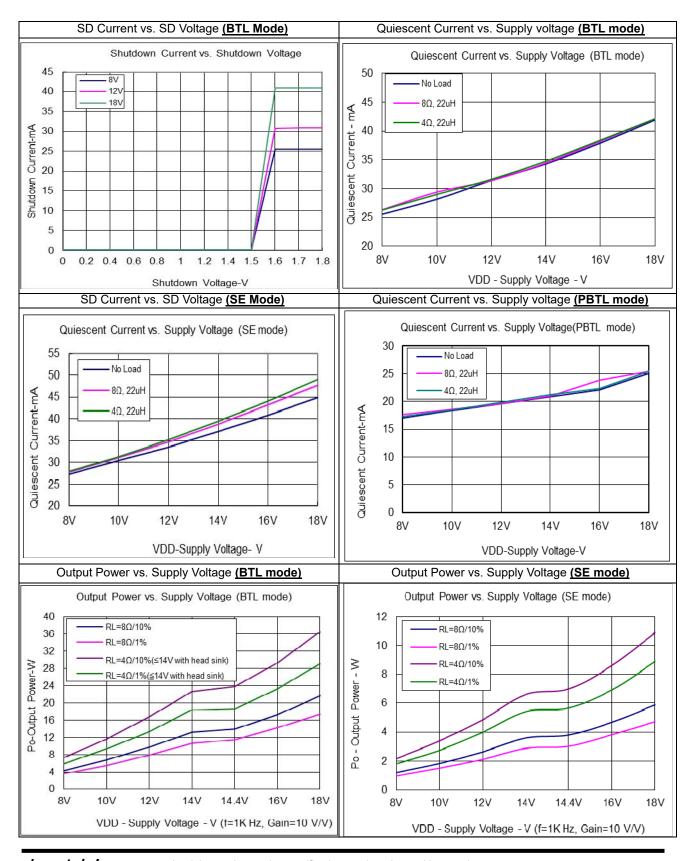


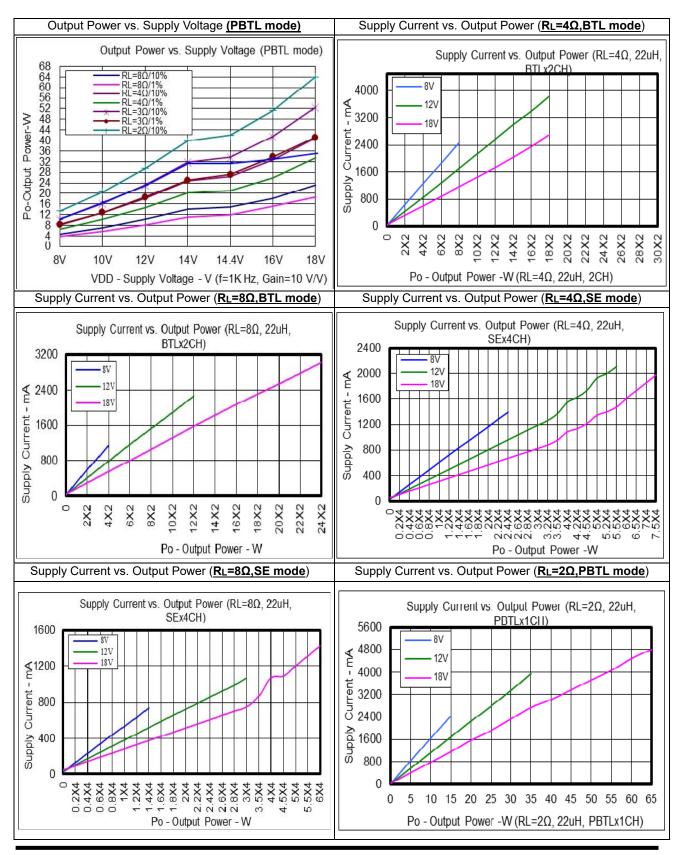


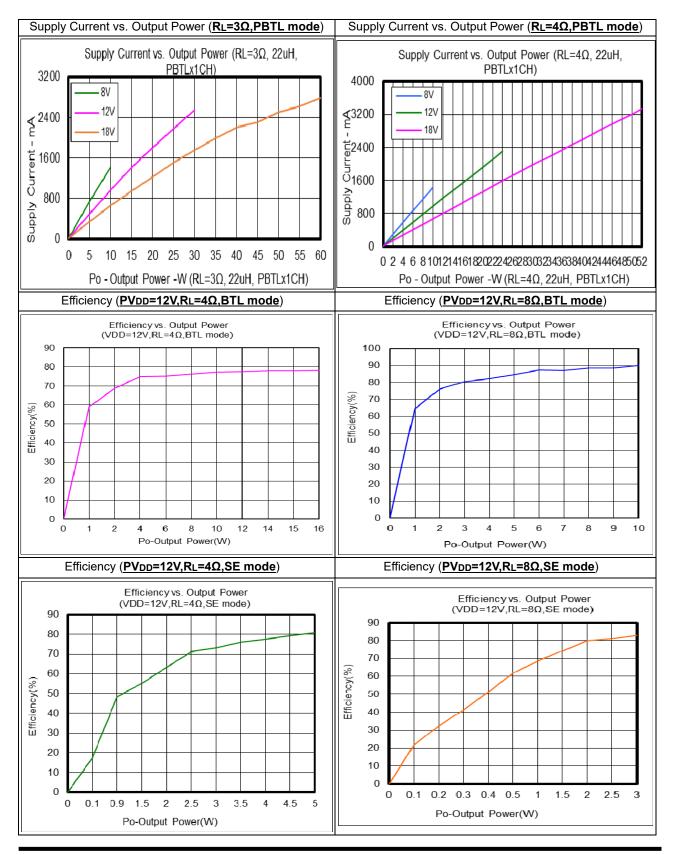


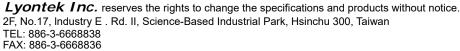


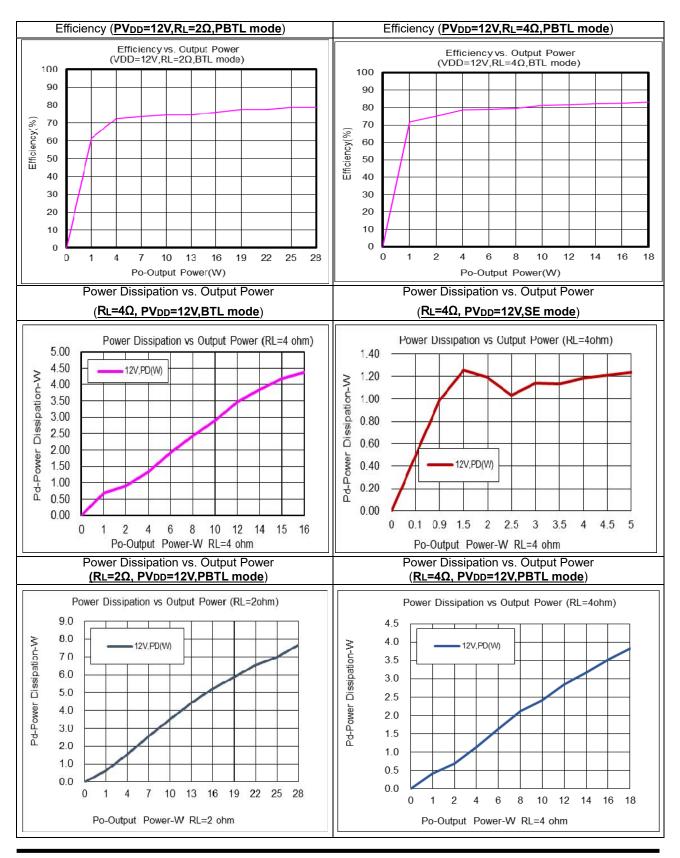







Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838

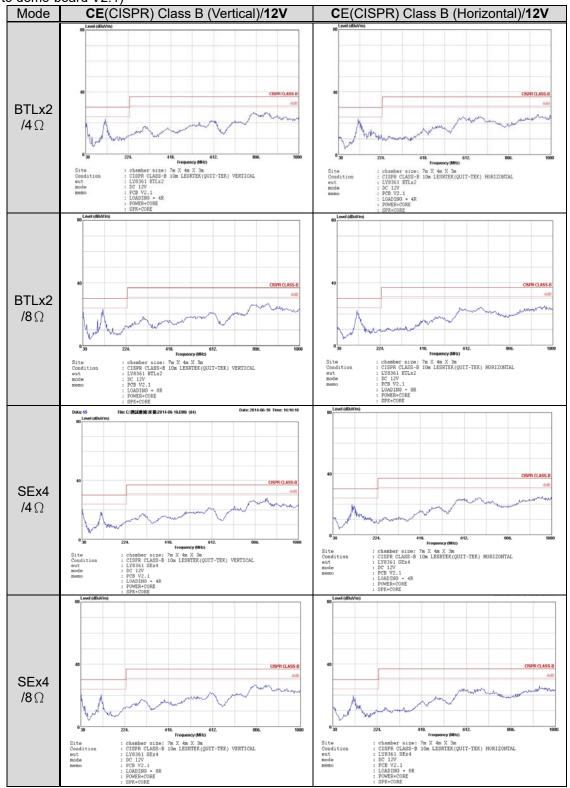

FAX: 886-3-6668836



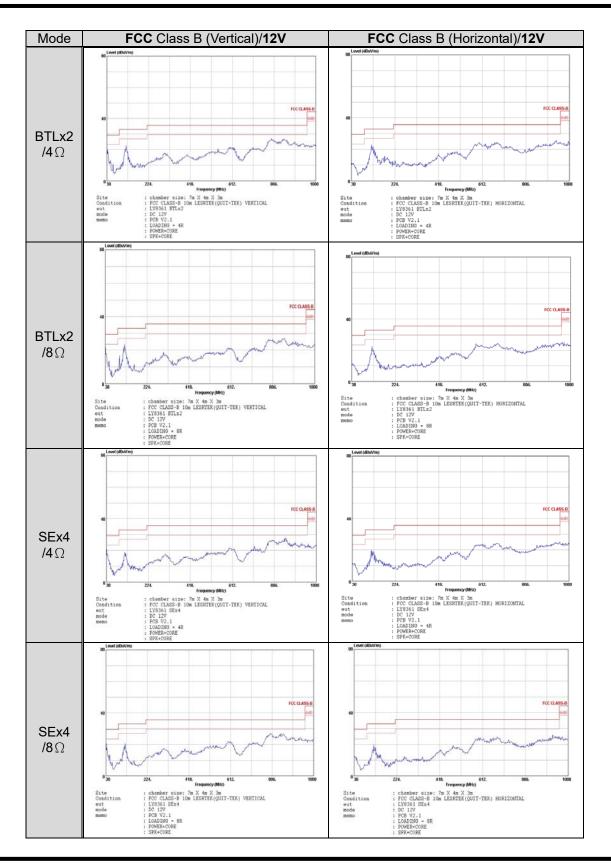
LY8361

Lyontek Inc. reserves the rights to change the specifications and products without notice.

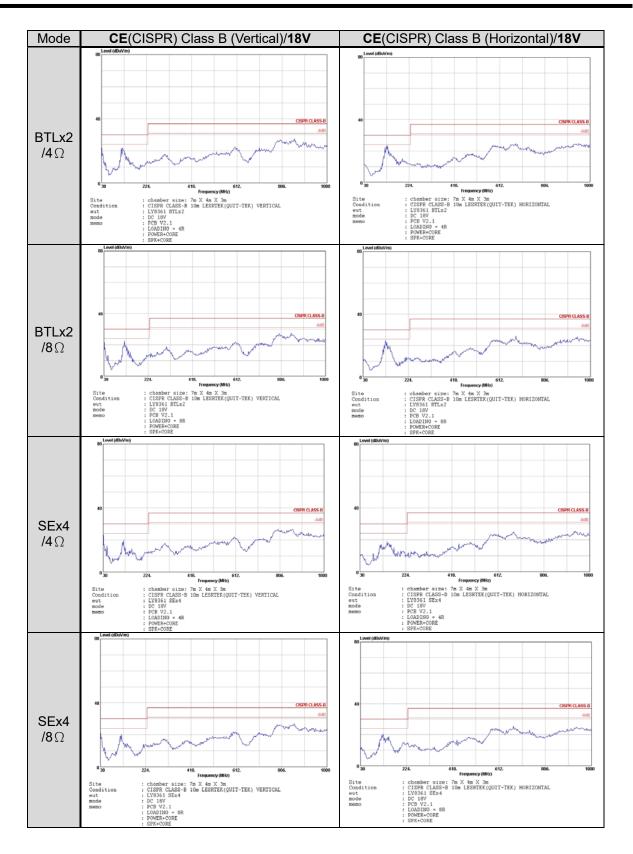
2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan


TEL: 886-3-6668838

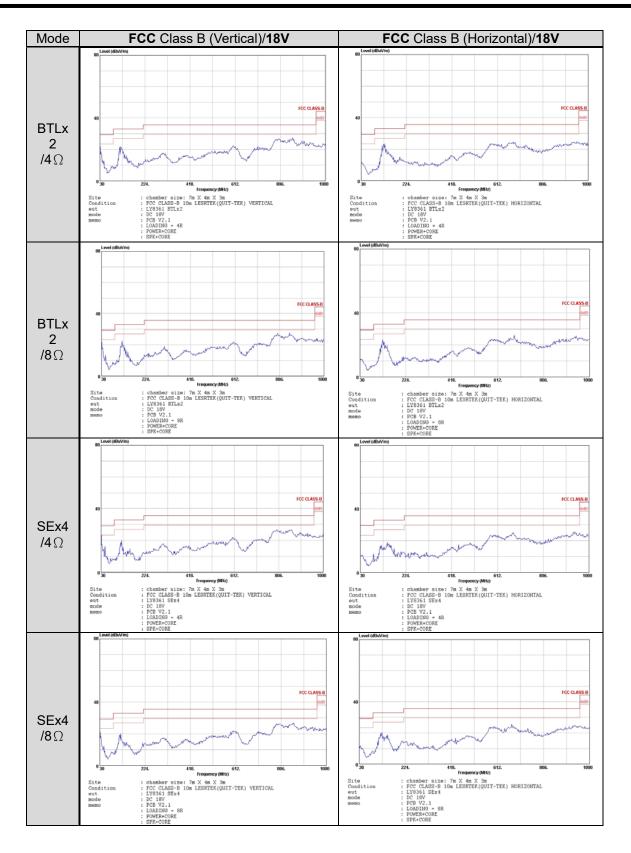
FAX: 886-3-6668836


EMI test result

(Refer to demo-board V2.1)



Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836



APPLICATION INFORMATION

Input Resistors (Ri) and Gain

The LY8361 has two internal amplifier stages. The pre-amplifier gain is externally configurable, while the total gain is internally fixed. The closed-loop gain of the pre-amplifier gain is set by selecting the Rf to Ri while the total gain is fixed at 4x. So the input resistors (Ri) set the gain of the amplifier according to the equation.

Pre-Amplifier Gain = Rf / Ri

Output=SE Mode:

Total Gain = $(Rf / Ri) \times 4$

 $A_{VD} = 20 \times \log [4 \times (Rf /Ri)]$

For example

Table 1. Typical Total Gain and AvD Values (SE Mode)

Rf (KΩ)	50	100	150	200	250	300
Ri (KΩ)	50	50	50	50	50	50
Total Gain	4	8	12	24	20	24
Avd (db)	12.04	18.06	21.58	24.08	26.02	27.6

Output=BTL Mode:

Total Gain = (Rf / Ri) x 8

 $A_{VD} = 20 \times \log [8 \times (Rf /Ri)]$

For example

Table 2. Typical Total Gain and Ave Values (BTE Mode)							
Rf (KΩ)	50	100	150	200			
Ri (KΩ)	50	50	50	50			
Total Gain	8	16	24	32			
Avd (db)	18.06	24.08	27.6	30.1			

Table 2. Typical Total Gain and AvD Values (BTL Mode)

Input Capacitors (Ci)

In typical application, C_i and the input resistance of the amplifier (R_i) form a high-pass filter with the corner frequency(f_c) determined in equation.

 $fc = 1 / (2\pi Ri Ci)$

The value of the input capacitor is important to consider as it directly affects the bass (low frequency) performance of the circuit.

2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan

TEL: 886-3-6668838

FAX: 886-3-6668836

For example

C is 0.1 μ F, so one would likely choose a value in the range of 0.1 μ F to 1.0 μ F. R is 50 k Ω and the specification calls for a flat bass response down to 30 Hz.

 $Ci = 1 / (2\pi Ri fc)$

Ci = 1 / ($2\pi \times 50$ K $\Omega \times 30$ Hz)=0.106uF⁻. One would likely choose a value of 0.1uF as this value is commonly used.

Note that it is important to Ci must be 10 times smaller than the bypass capacitor to reduce clicking and popping noise from power on/off and entering and leaving shutdown. After sizing Ci for a given cutoff frequency, size the bypass capacitor to 10 times that of the input capacitor.

 $Ci \leq Cbypass$

Bypass Capacitor (Cbypass)

The Bypass Capacitor (C3) is the most critical capacitor and serves important functions. During start-up or recovery from shutdown mode. Cbypass determines the rate at which the amplifier starts up. The Cbypass will to reduce noise caused by the power supply coupling into the output drive signal. This noise is from the internal analog reference to the amplifier, which appears as degraded the PSRR and THD+N values. The bypass capacitor (C3) with values of 1.0µF to 10.0µF is recommended for the best THD and noise performance. Therefore, increasing the bypass capacitor reduces clicking and popping noise from power on/off and entering and leaving shutdown. To have minimal pop, Cbypass should be 10 times larger than Ci.

Cbypass \geq Ci

Power Supply Decoupling Capacitor (Cs)

The LY8361 is a high-performance class-D audio amplifier that requires adequate power supply decoupling to ensure the efficiency is high and total harmonic distortion (THD) is low. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1uF~1.0uF, placed as close as possible to the device PVCC lead works best. Placing this decoupling capacitor close to the LY8361 is very important for the efficiency of the class-D amplifier, because any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency. For filtering lower-frequency noise signals, a 1000uF or greater capacitor placed near the audio power amplifier would also help, so 2000uF or larger capacitor should be placed on each PVCC terminal.

Single-Ended Output Capacitor, (Co)

In single-ended (SE) applications, the dc blocking capacitor forms a high-pass filter with the speaker impedance. The frequency response rolls off with decreasing frequency at a rate of 20 dB/decade. The cutoff frequency is determined by $fc = 1 / (2\pi R L Co)$

Table 3. Filter Responses Reference Values									
Speaker Load		SE mode - Co Capacitor select(uF)							
(Ω)	fc=180Hz	fc=120Hz	fc=100Hz	fc=80Hz	fc=60Hz	fc=40Hz	fc=20Hz		
4	220	330	390	470	680	1000	2200		
6	-	220	-	330	470	680	1500		
8	-	-	200	-	330	470	1000		
		Speaker Load fc=180Hz 4 220 6 -	Speaker Load S (Ω) fc=180Hz fc=120Hz 4 220 330 6 - 220	Speaker Load SE mode - Co (Ω) fc=180Hz fc=120Hz fc=100Hz 4 220 330 390 6 - 220 -	Speaker Load SE mode - Co Capacitor s (Ω) fc=180Hz fc=120Hz fc=100Hz fc=80Hz 4 220 330 390 470 6 - 220 - 330	Speaker Load SE mode - Co Capacitor select(uF) (Ω) fc=180Hz fc=120Hz fc=100Hz fc=80Hz fc=60Hz 4 220 330 390 470 680 6 - 220 - 330 470	Speaker Load SE mode - Co Capacitor select(uF) (Ω) fc=180Hz fc=120Hz fc=100Hz fc=80Hz fc=60Hz fc=40Hz 4 220 330 390 470 680 1000 6 - 220 - 330 470 680		

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E . Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan TEL: 886-3-6668838 FAX: 886-3-6668836

Output Filter and Frequency Response

The output filter components consist of the series inductor and capacitor to ground at the LOUT and ROUT pins. There are several possible configurations, depending on the speaker impedance and whether the output configuration is single-ended (SE) or bridge-tied load (BTL). Table 4 lists the recommended values for the filter components. It is important to use a high-quality capacitor in this application.

Output Type	Speaker Load (Ω)	Filter Inductor (uH)	Filter Capacitor (uF)						
Bridge Tied Load (BTL)	8	22	0.68						
Single Ended (SE)	8	33	0.47						
	4	22	0.68						

Table 4. Recommended Filter Output Components Reference Values

BST Capacitors

The half H-bridge output stages use only NMOS transistors. Therefore, they require bootstrap capacitors for the high side of each output to turn on correctly. A 1.0 ceramic capacitor, rated for at least 25V up, must be connected from each output to its corresponding bootstrap input. Specifically, all 1.0 capacitor must be connected from OUT to BST pin.

The bootstrap capacitors connected between the BST pins and their corresponding outputs function as a floating power supply for the high-side N-channel power MOSFET gate-drive circuitry. During each high-side switching cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side MOSFETs turned on.

VCLAMP Capacitor

To ensure that the maximum gate-to-source voltage for the NMOS output transistors is not exceeded, one internal regulator clamps the gate voltage. A 1.0uF capacitor must be connected from VCLAMP pin to ground and must be rated for 25V up. The voltages at the VCLAMP terminal may vary with PVCC and may not be used for powering any other circuitry.

Shutdown Function

When the LY8361 not in use. The device will be to turn off the amplifier to reduce power consumption. When logic low is applied to the shutdown pin, this shutdown feature will turns the amplifier off. By switching the shutdown pin connected to GND, the device supply current draw will be minimized in idle mode. The pin cannot be left floating due to the internal did not pull-up.

Mute Function

The Mute pin is an input pin to control the LY8361 output state. A logic high is disable the LY8361 outputs. A logic low on this pin enables the outputs. This terminal may be used as a quick disable/enable of outputs when changing channels on a TV or transitioning between different audio sources. The Mute pin should never be left floating. For power conservation, the SD pin should be used to reduce the

quiescent current to the absolute minimum level.

Over-Heat Protection and Automatic Recovery

The LY8361 has a built-in over-heat protection circuit, it will turn off all power output when the chip temperature over 180° C, the chip will return to normal operation automatically after the temperature cool down to 160° C.

Short Circuit Protection and Automatic Recovery

The LY8361 has short-circuit protection circuitry on the outputs that prevents damage to the device during Output pin-to-output pin shorts, output-to-GND shorts, and output-to-PVCC shorts.

When a short circuit is detected on the outputs, the part immediately disables the output drive. If the short was not removed, the protection circuitry again activates until the short is removed.

DC Volume Control

The DCV pin controls the all mode (SE/BTL/2.1CH/PBTL) volume when driving speakers. This pin is controlled with a dc voltage, which should not exceed AVDD voltage. The output volume increases in discrete steps as the dc voltage increases and decreases in discrete steps as the dc voltage decreases. There are a total of 32 discrete gain steps of the amplifier and range from -56 dB to 32 dB for all mode operation.

PBTL (Mono) Configuration

The LY8231 features a mono mode that allows the right and left channels to operate in parallel, achieving up to 60W of output power with external heat sink. Connect OUT_A to OUT_B and OUT_C to OUT_D using heavy PCB traces as close as possible to the device.

Also in PBTL(mono) and 2.1CH mode, the IN1 \ O1 \ IN2 \ O2 pin can becomes a Hi/Lo pass filter operational amplifier, allowing for flexibility in system design and reducing external component count.

PCB Layout

Because the LY8361 is a class-D amplifier that switches at a high frequency, the layout of the PCB should be optimized according to the following guidelines for the best possible performance.

1. Thermal pad—The thermal pad must be soldered to the PCB for proper thermal performance and optimal reliability.

Then the LY8361 must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink.

But when total output power \geq 40W, the device must be use external heat sink.

2. Decoupling capacitors—The high-frequency 0.1uF decoupling capacitors should be placed as close to the PVCC pins and AVCC pin terminals as possible.

And the Bypass pin capacitor and VCLAMP pin capacitor should also be placed as close to the device as possible.

Large (2000uF or greater) bulk power-supply decoupling capacitors should be placed near the device on the PVCC terminals.

3. Grounding—The AVCC pin decoupling capacitor and Bypass pin capacitor should each be grounded to analog ground (AGND).

The PVCC decoupling capacitors and VCLAMP capacitors should each be grounded to power ground (PGND). Analog ground and power ground should be connected at the thermal pad, which should be used as a central ground connection or star ground for the LY8361.

- 4. Output filter—The reconstruction filter should be placed as close to the output terminals as possible for the best EMI performance. The capacitors should be grounded to power ground.
- 5. The input resistors need to be very close to the device input pins so noise does not couple on the high impedance nodes between the input resistors and the input amplifier of the device.
- 6. Making the high current traces going to PVCC, GND, Vo+ and Vo- pins of the device should be as wide as possible to minimize trace resistance. If these traces are too thin, the device's performance and output power will decrease. The input traces do not need to be wide, but do need to run side-by-side to enable common-mode noise cancellation.

DEMO BOARD INFORMATION

Demo Board Application Circuit (SEx4 mode)

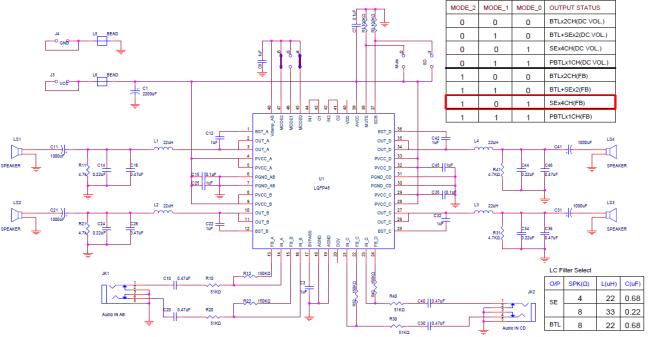


Figure 29 LY8361 Demo Board Application Circuit (SEx4 with FB mode)

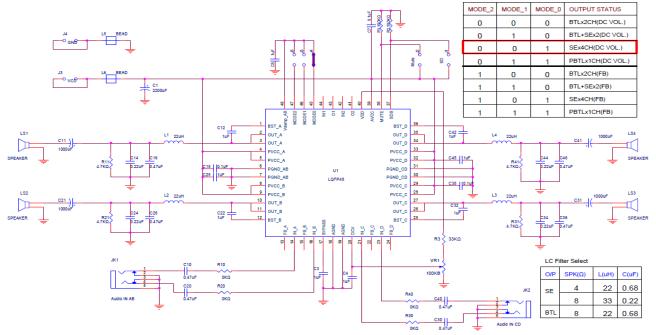


Figure 30 LY8361 Demo Board Application Circuit (SEx4 with DC Volume mode)

(*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink.

But when total output power \geq 40W, the device must be use external heat sink.

Demo Board BOM List (SEx4 mode)

	LY8361 V3.0 BOM List (SEx4 mode)									
No.	Description	Reference	Amount	Note	Remark					
1	Capacitor,1000uF	C1,C2	2	DIP, 35V,105℃,10*20, EC Cap.						
2	Capacitor,470uF	C11,C21,C31,C41	4	DIP, 35V,105℃,10*20, EC Cap.						
3	Capacitor, 1uF	C3,C5,C12,C22,C32,C42	6	SMD0805 ,80%/-20%,NP						
4	Capacitor, 0.47uF	C14,C24,C34,C44	4	SMD0805,80%/-20%,NP						
5	Capacitor, 0.22uF	C13,C23,C33,C43	4	DIP, MSC,100Vdc, ±10%						
6	Capacitor, 0.1uF	C7,C10,C20,C30,C40,C15 ,C25,C35,C45	9	SMD0805,80%/-20%,NP						
7	Resistor, 150KΩ	R12,R22,R32,R42	4	SMD0805,1/8W, 1%	FB mode only					
8	Resistor, 100KΩ	R1,R2	2	SMD0805,1/8W, 1%						
9	Resistor, 51KΩ	R10,R20,R30,R40	4	SMD0805,1/8W, 1%	DCV mode use 0Ω					
10	Resistor, 4.7KΩ	R11,R21,R31,R41	4	SMD0805,1/8W, 1%						
11	Fixed Inductors 22uH	L1,L2,L3,L4	4	DIP TOKO (A7502BY-330M)						
12	Capacitor, 0.1uF	C4	1	MD0805,80%/-20%,NP						
13	Resistor, 33KΩ	R3	1	SMD0805,1/8W, 1%	DCV mode					
14	Metal shaft rotary potentiometer	VR1	1	DIP100K,taper,+20%/-20%	only					

Demo Board Application Circuit (BTLx2 mode)

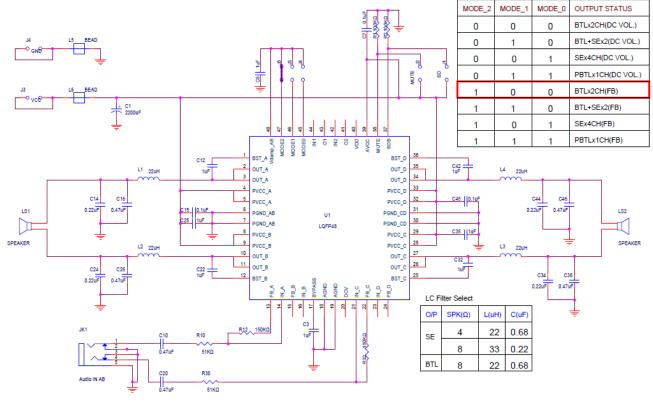


Figure 31 LY8361 Demo Board Application Circuit (BTLx2 with FB mode)

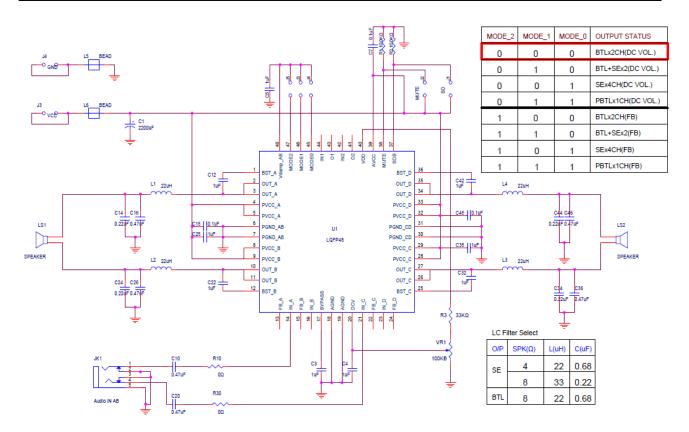


Figure 32 LY8361 Demo Board Application Circuit (BTLx2 with DC Volume mode)

(*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink.

But when total output power \geq 40W, the device must be use external heat sink.

Demo Board BOM List (BTLx2 mode)

LY8361 V3.0 BOM List (BTLx2 mode)

No.	Description	Reference	Amount	Note	Remark
1	Capacitor,1000uF	C1,C2	2	DIP, 35V,105℃,10*20, EC Cap.	
2	Capacitor, 1uF	C3,C5,C12,C22,C32,C42	6	SMD0805 ,80%/-20%,NP	
3	Capacitor,0.47uF	C14,C24,C34, C44	4	SMD0805 ,80%/-20%,NP	
4	Capacitor, 0.22uF	C13,C23,C33,C43	4	DIP, MSC,100Vdc, ±10%	
5	Capacitor, 0.1uF	C7,C10,C20,C15,C25, C35,C45	7	SMD0805,80%/-20%,NP	
6	Resistor, 150KΩ	R12,R32	2	SMD0805,1/8W, 1%	FB mode only
7	Resistor, 100KΩ	R1,R2	2	SMD0805,1/8W, 1%	
8	Resistor, 51KΩ	R10,R30	2	SMD0805,1/8W, 1%	DCV mode use 0Ω
9	Fixed Inductors 22uH	L1,L2,L3,L4	4	DIP, TOKO (A7502BY-330M)	
10	Capacitor, 0.1uF	C4	1	MD0805,80%/-20%,NP	
11	Resistor, 33KΩ	R3	1	SMD0805,1/8W, 1%	DCV mode
12	Metal shaft rotary potentiometer	VR1	1	DIP100K,taper,+20%/-20%	only

Demo Board Application Circuit (2.1CH mode) <u>SEx2 + BTLx1 mode</u>

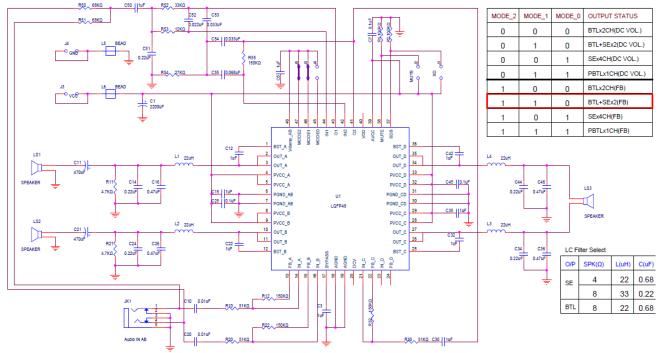


Figure 33 LY8361 Demo Board Application Circuit (2.1CH with FB mode)

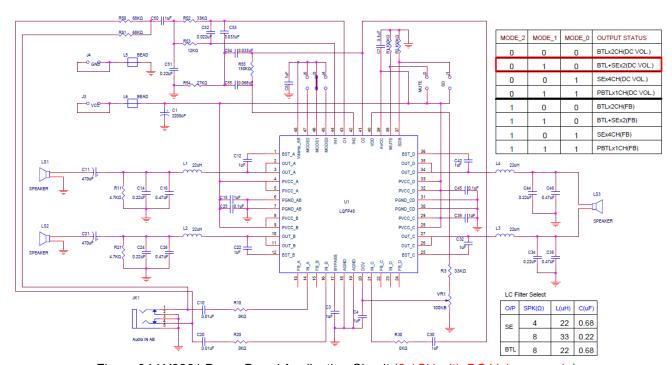
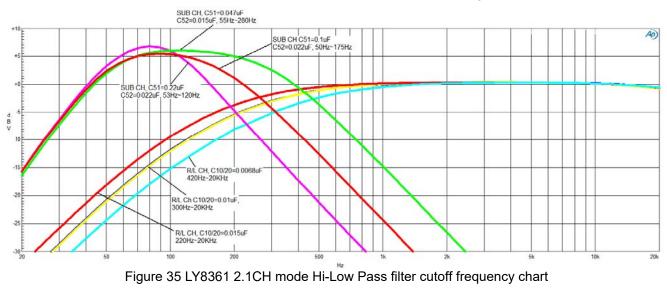


Figure 34 LY8361 Demo Board Application Circuit (<u>2.1CH with DC Volume mode</u>) (*3) The device must be mounted to the PCB board and increase a large area of copper or recommended

to use external heat sink.


But when total output power \geq 40W, the device must be use external heat sink.

Demo Board BOM List (2.1CH mode)

	LY8361 V3.0 BOM List (2.1CH mode)									
No.	Description	Reference	Amount	Note	Remark					
1	Capacitor,1000uF	C1,C2	2	DIP 35V,105℃,10*20, EC Cap.						
2	Capacitor,220uF	C11,C21	2	DIP 35V,105℃,10*20, EC Cap.						
3	Capacitor, 1uF	C3,C5,C30,C12,C22,C32, C42,C50	7	SMD0805,80%/-20%,NP						
4	Capacitor,0.47uF	C14,C24,C34,C44	4	SMD0805,80%/-20%,NP						
5	Capacitor,0.22uF	C51	1	SMD0805,80%/-20%,NP						
6	Capacitor,0.22uF	C13,C23,C33,C43	4	DIP, MSC,100Vdc, ±10%						
7	Capacitor, 0.1uF	C7,C15,C25,C35,C45	5	SMD0805 ,80%/-20%,NP						
8	Capacitor, 0.068uF	C55	2	SMD0805,80%/-20%,NP						
9	Capacitor, 0.033uF	C53,C54	2	SMD0805,80%/-20%,NP						
10	Capacitor, 0.022uF	C52	1	SMD0805,80%/-20%,NP						
11	Capacitor, 0.01uF	C10,C20	2	SMD0805,80%/-20%,NP						
12	Resistor, 150KΩ	R12,R22,R32,R55	4	SMD0805,1/8W, 1%	R12,R22, R32 FB mode only					
13	Resistor, 100KΩ	R1,R2	2	SMD0805,1/8W, 1%						
14	Resistor, 82KΩ	R30	1	SMD0805,1/8W, 1%						
15	Resistor, 68KΩ	R50,R51	2	SMD0805,1/8W, 1%						
16	Resistor, 51KΩ	R10,R20	2	SMD0805,1/8W, 1%	DCV mode use 0Ω					
17	Resistor, 33KΩ	R52	1	SMD0805,1/8W, 1%						
18	Resistor, 27KΩ	R54	1	SMD0805,1/8W, 1%						
19	Resistor, 12KΩ	R53	1	SMD0805,1/8W, 1%						
20	Resistor, 4.7KΩ	R11,R21	2	SMD0805,1/8W, 1%						
21	Fixed Inductors 22uH	L1,L2,L3,L4	4	DIP, TOKO (A7502BY-220M)						
22	Capacitor, 0.1uF	C4	1	MD0805,80%/-20%,NP						
23	Resistor, 33KΩ	R3	1	SMD0805,1/8W, 1%	DCV mode					
24	Metal shaft rotary potentiometer	VR1	1	DIP100K,taper,+20%/-20%	only					

2.1 Channel (2xSE+1xBTL Mode) Hi-Low Pass filter cutoff frequency chart:

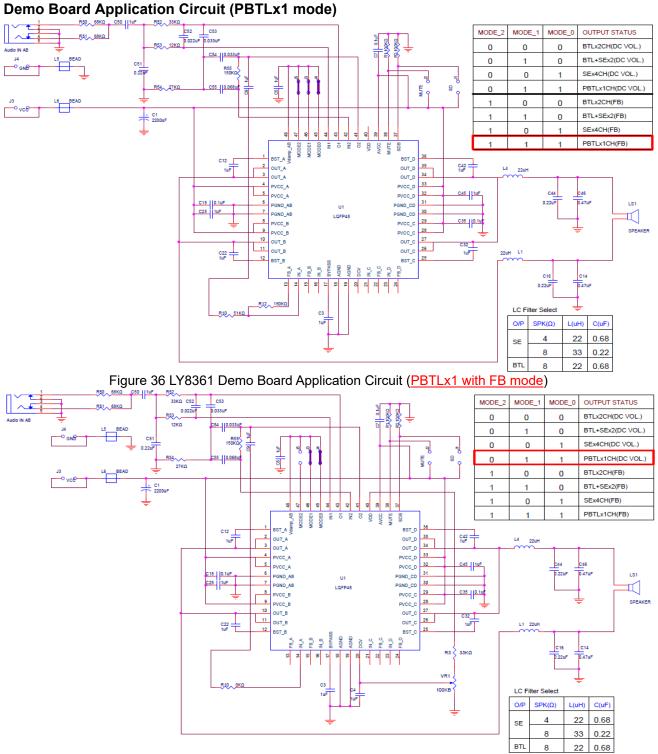
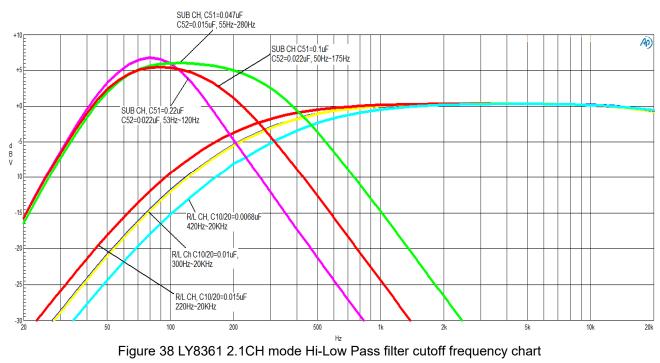
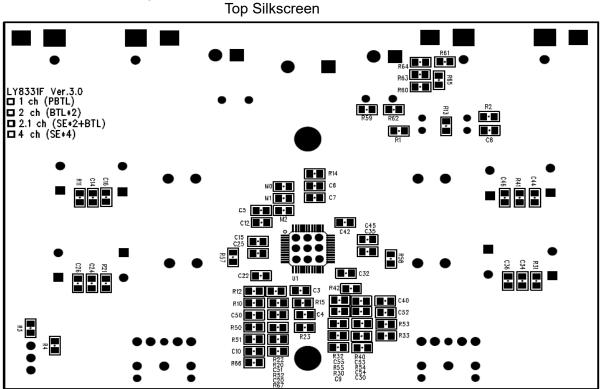


Figure 37 LY8361 Demo Board Application Circuit (PBTLx1 with DC Volume mode)

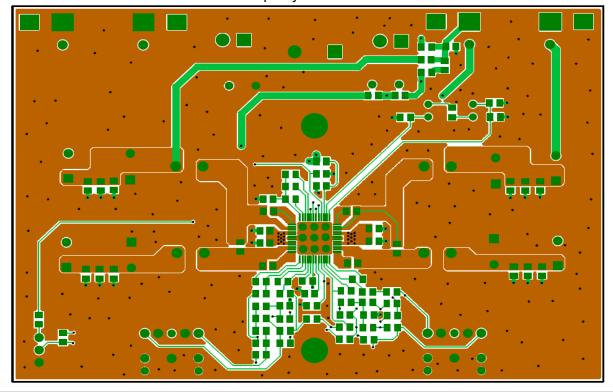
(*3) The device must be mounted to the PCB board and increase a large area of copper or recommended to use external heat sink.

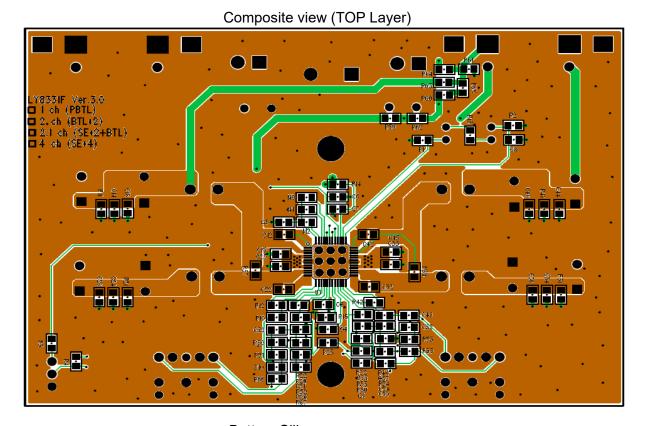

But when total output power \geq 40W, the device must be use external heat sink.

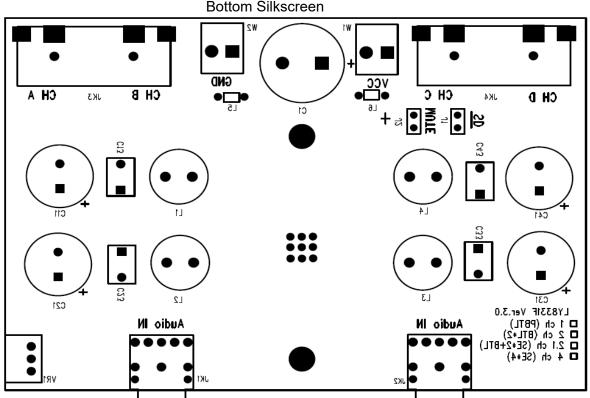
Demo Board BOM List (PBTL mode)


Denit	о Board BOIM List (,			
		LY8361 V3.0 BOM List	<u>(PBTL mod</u>	<u>de)</u>	
No.	Description	Reference	Amount	Note	Remark
1	Capacitor,1000uF	C1,C2	2	DIP 35V,105℃,10*20, EC Cap.	
2	Capacitor, 1uF	C3,C5,C9,C12,C22,C32 C42,C50	8	SMD0805,80%/-20%,NP	
3	Capacitor,0.47uF	C14,C44	2	SMD0805,80%/-20%,NP	
4	Capacitor,0.22uF	C51	1	SMD0805,80%/-20%,NP	
5	Capacitor,0.22uF	C13,C43	5	DIP, MSC,100Vdc, ±10%	
6	Capacitor, 0.1uF	C7,C15,C25,C35,C45	5	SMD0805 ,80%/-20%,NP	
7	Capacitor, 0.068uF	C55	2	SMD0805,80%/-20%,NP	
8	Capacitor, 0.033uF	C53,C54	2	SMD0805,80%/-20%,NP	
9	Capacitor, 0.022uF	C52	1	SMD0805,80%/-20%,NP	
10	Resistor, 150KΩ	R12,R55	2	SMD0805,1/8W, 1%	R12 FB mode only
11	Resistor, 120KΩ	R10	1	SMD0805,1/8W, 1%	DCV mode use 0Ω
12	Resistor, 100KΩ	R1,R2	2	SMD0805,1/8W, 1%	
13	Resistor, 68KΩ	R50,R51	2	SMD0805,1/8W, 1%	
14	Resistor, 33KΩ	R52	1	SMD0805,1/8W, 1%	
15	Resistor, 27KΩ	R54	1	SMD0805,1/8W, 1%	
16	Resistor, 12KΩ	R53	1	SMD0805,1/8W, 1%	
17	Fixed Inductors 22uH	L1,L2,L3,L4	4	DIP, TOKO (A7502BY-220M)	
18	Capacitor, 0.1uF	C4	1	MD0805,80%/-20%,NP	
19	Resistor, 33KΩ	R3	1	SMD0805,1/8W, 1%	DCV mode
20	Metal shaft rotary potentiometer	VR1	1	DIP100K,taper,+20%/-20%	only

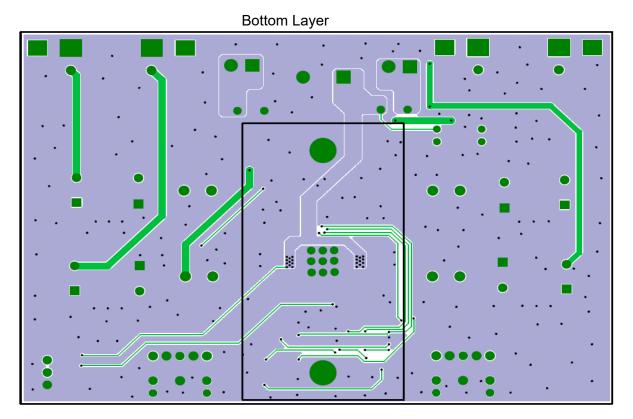
PBTL Mode (Hi-Low Pass filter cutoff frequency chart):

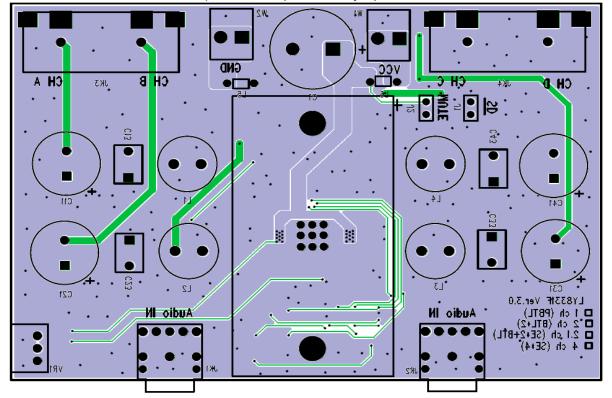



Demo Board Artwork (4 type all in one)

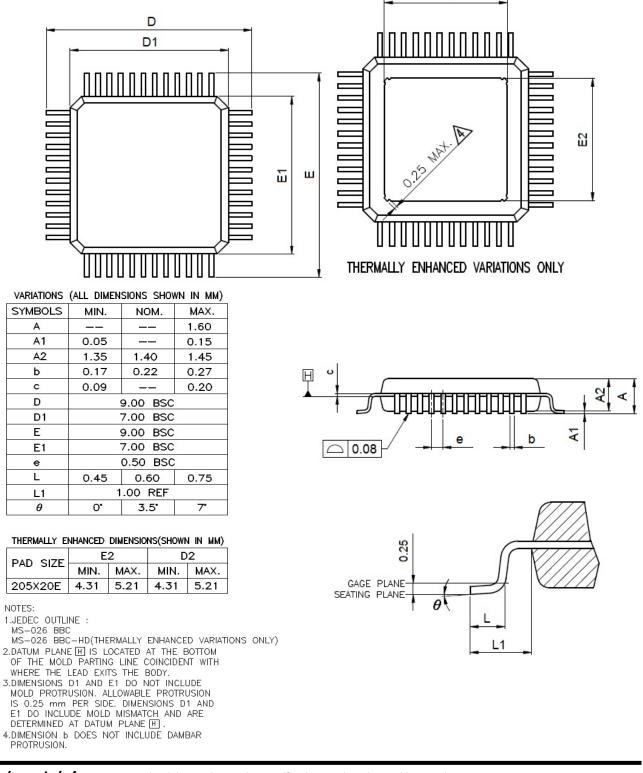


Top Layer





Composite view (Bottom Layer)



D2

PACKAGE OUTLINE DIMENSION

LQFP 48 Pin Package Outline Dimension

