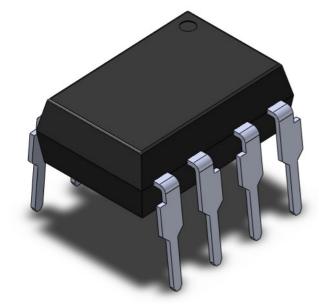


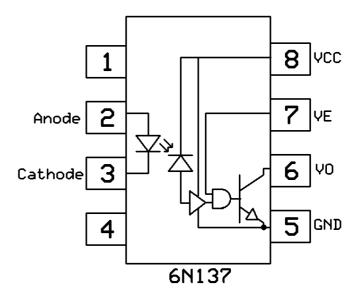
6N137

Features

- High speed 10MBit/s
- High isolation voltage between input and output (Viso=5000 Vrms)
- Guaranteed performance from -40 ℃ to 85 ℃
- Wide operating temperature range of -55 ℃ to 100 ℃
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898
 - IEC60065, IEC60950


Applications

- Line receivers
- Telecommunication equipment
- Feedback loop in switch-mode power supplies


- Home appliances
- High speed logic ground isolation

Description

The 6N137 optocouplers consist of a 850 nm AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output. This output features an open collector, there by permitting wired OR outputs. The switching parameters are guaranteed over the temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C. A maximum input signal of 5mA will provide a minimum output sink current of 13mA (fan out of 8).

Package Outline

Note: Different lead forming options available. See package

dimension.

Schematic

Symbol	Parameters	Ratings U		Notes
Viso	Isolation voltage *1	5000	VRMS	
Topr	Operating temperature	-55 ~ +85	°C	
Tstg	Storage temperature	-55 ~ +125	°C	
Tsol	Soldering temperature *2	260	°C	
Emitter				
lF	Forward current	50	mA	
VR	Reverse voltage	5	V	
Pı	Power dissipation	100	mW	
Detector				•
Po	Power dissipation	85	mW	
lo	Average Output current	50	mA	
Vo	Output voltage	7.0	V	1min(Max.)
Vcc	Supply voltage	7.0	V	
VE	Enable Input Voltage Not to Exceed VCC by more than 500mV	5.5	V	

Absolute Maximum Rating at 25°C

Electrical Characteristics

 T_A = -40 - 85 °C (unless otherwise specified). Typical values are measured at T_A = 25°C and V_{CC} =5V

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	IF = 10mA	-	1.4	1.6	V	
VR	Reverse Voltage	IR = 10µA	5.0	-	-	V	
$\Delta V_F / \Delta T_A$	Temperature coefficient of forward voltage	IF =10mA	-	-1.8	-	mV/℃	

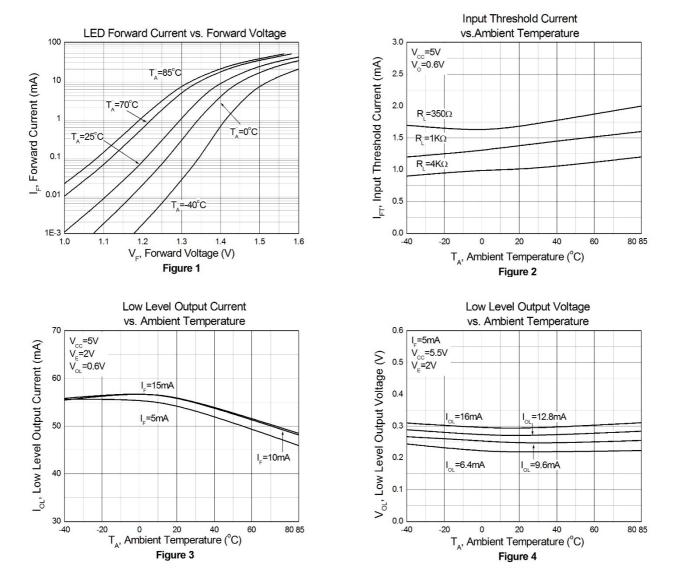
Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
Іссн	Logic High Supply Current	IF=0mA, VE=0.5V, VCC=5.5V	-	6.5	10	mA	
IccL	Logic Low Supply Current	$I_{F}=10mA, V_{E}=0.5V, V_{CC}=5.5V$	-	8.8	13	mA	
VEH	High Level Enable Voltage	I _F =10mA, V _{CC} =5.5V	2.0	-	-	V	
V _{EL}	Low Level Enable Voltage	I _F =10mA, V _{CC} =5.5V	-	-	0.8	V	
IEH	High Level Enable Current	V _E =2.0V, V _{CC} =5.5V	-	-0.53	-1.6	mA	
I _{EL}	Low Level Enable Current	$V_{E}=0.5V, V_{CC}=5.5V$	-	-0.75	-1.6	mA	

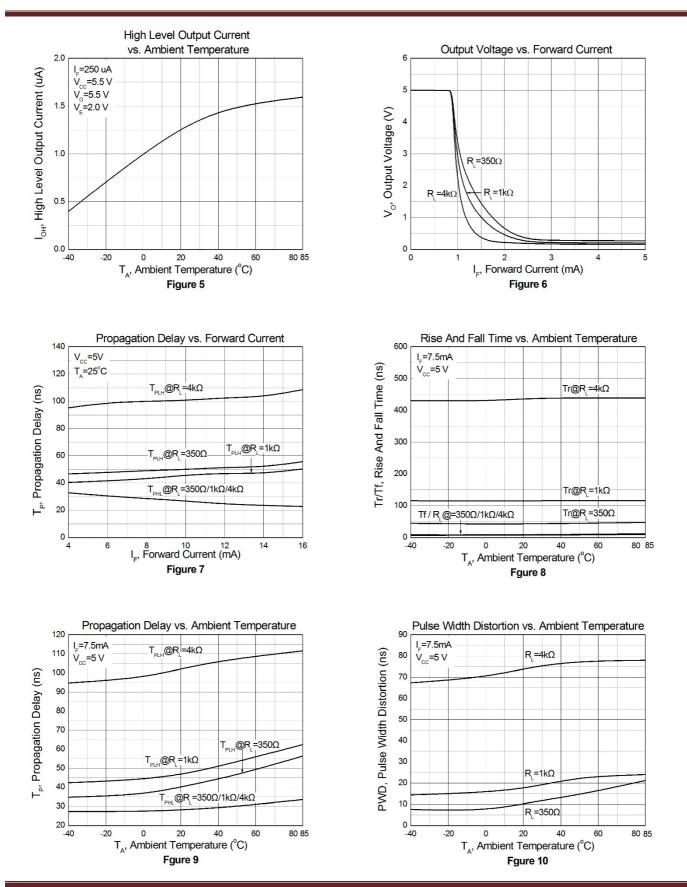
Transfer Characteristics

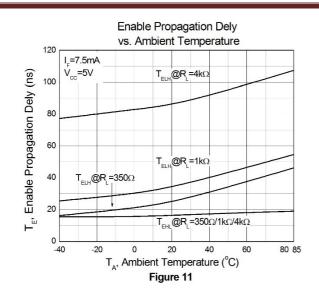
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
	Input Threshold Current	$V_{CC}=5.5V, V_{O}=0.6V,$	-	2.5	5	mA	
IFT	Input Threshold Current	V _E =2.0V, I _O =13mA		2.5			
		I⊧=250μA, Vo=Vcc=5.5V,		2.0	100	μΑ	
Іон	Logic High Output Current	V _E =2.0V	-				
V _{OL}	Low Level Output Voltage	$I_{F}=5mA, V_{CC}=5.5V, V_{E}=2.0V,$	-	- 0.35	0.6	V	
		I _O =13mA					

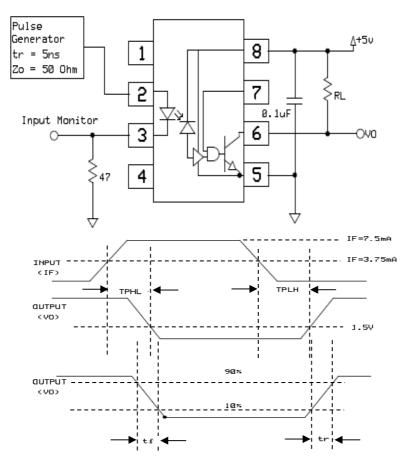
Electrical Characteristics

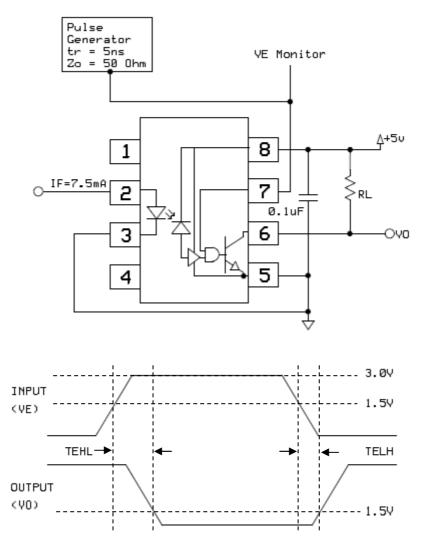

 T_A = -40 - 85 °C (unless otherwise specified). Typical values are measured at T_A = 25°C, V_{CC} =5V and I_F = 7.5mA

Switching Characteristics


Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
TPHL	Output Propagation Delay High		-	34	75	ns	
IFAL	To Low						
Ŧ	Output Propagation Delay Low to	C _L = 15pF, R _L = 350Ω	-	39	75	ns	
Tplh	High						
Pwd	Pulse Width Distortion		-	5	34	ns	
Tr	Output Rise Time		-	37	-	ns	
T _f	Output Fall Time		-	10	-	ns	
T	Enable Propagation Delay Low To		-	15	-	ns	
Telh	High	VEH= 3.5V, C_L = 15pF, R_L =		15			
Τ	Enable Propagation Delay High	350Ω		15		20	
TEHL	To Low		-	15	-	ns	
СМн	Common Mode Transient	$I_{F}=0mA, V_{CM}=50Vp\text{-}p, V_{OH}=$	5000	-	-	V/µs	
CIVIH	Immunity at Logic High	$2.0V, R_L=350\Omega$	5000				
CM.	Common Mode Transient	I _F =7.5mA, V _{CM} = 50Vp-p,	5000			V/µs	
CM∟	Immunity at Logic Low	$V_{OH}= 0.8V, R_L= 350\Omega$	5000	-			

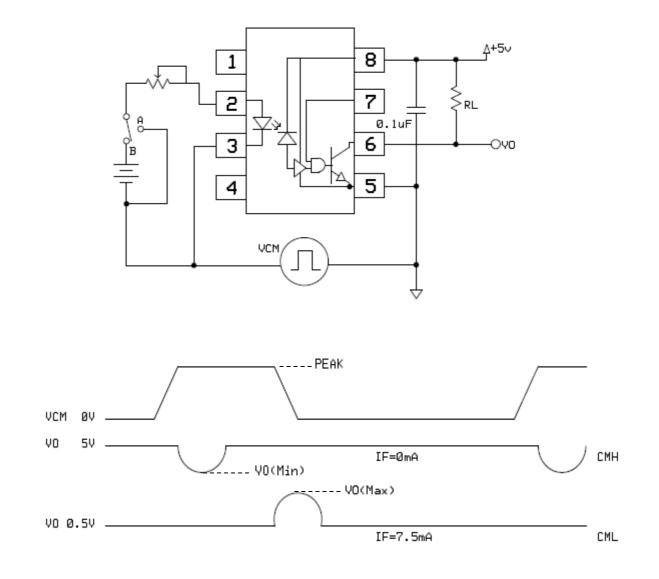

Typical Characteristic Curves



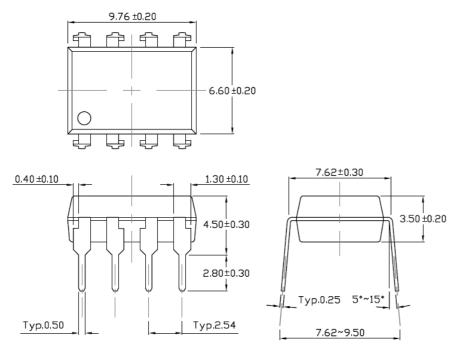


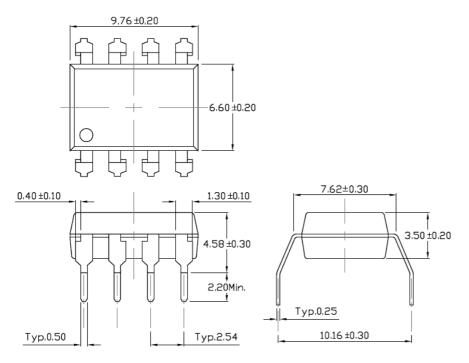
Test Circuits

Switching Time Test Circuit



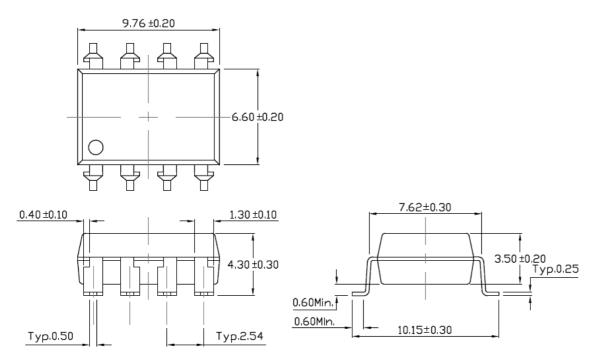
Enable Switching Time Test Circuit



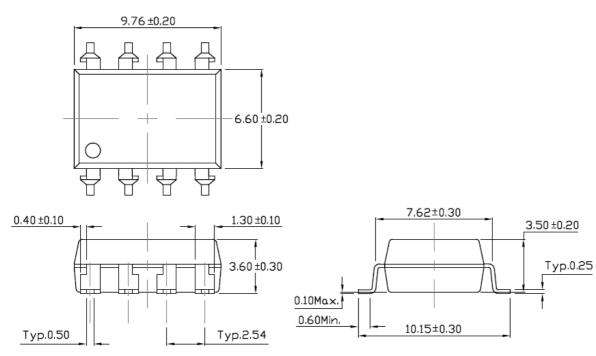


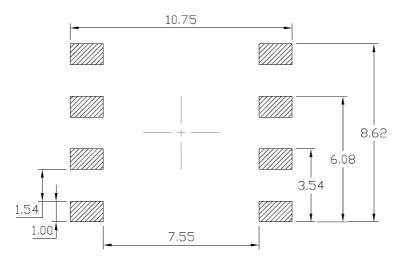
Package Dimension Dimensions in mm unless otherwise stated

Standard DIP – Through Hole

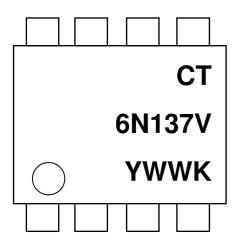


Gullwing (400mil) Lead Forming – Through Hole (M Type)




Surface Mount Lead Forming (S Type)

Surface Mount (Low Profile) Lead Forming (SL Type)



Recommended Solder Mask Dimensions in mm unless otherwise stated

Device Marking

Note:

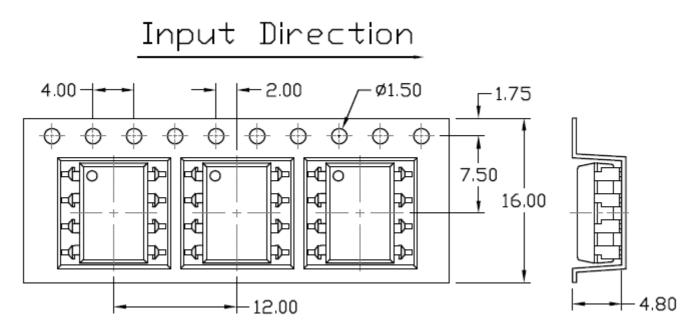
- CT : Denotes "CT Micro"
- 6N137 : Product Number V : VDE Option
- Y : Fiscal Year
- WW : Work Week
- K : Production Code

Ordering Information

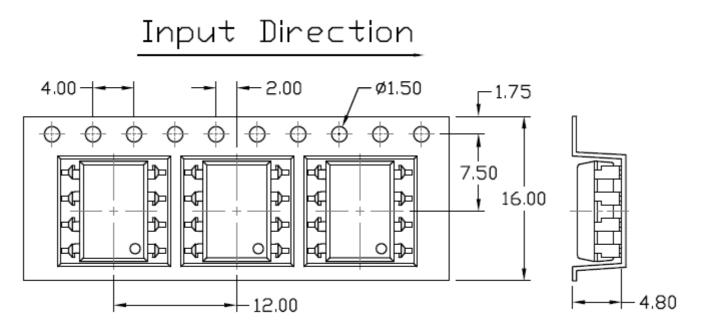
6N137Y(V)(Z)

Y = Lead form option (S, SL, M or none)

V = VDE Option (V or None)

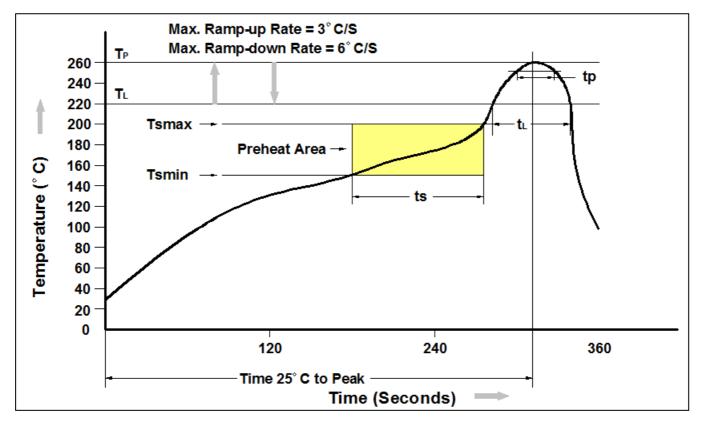

Z = Tape and reel option (T1, T2 or none)

Option	Description	Quantity
None	Standard 8 Pin Dip	45 Units/Tube
М	Gullwing (400mil) Lead Forming	45 Units/Tube
S(T1)	Surface Mount Lead Forming – With Option 1 Taping	1000 Units/Reel
S(T2)	Surface Mount Lead Forming – With Option 2 Taping	1000 Units/Reel
SL(T1)	Surface Mount (Low Profile) Lead Forming- With Option 1 Taping	1000 Units/Reel
SL(T2)	Surface Mount (Low Profile) Lead Forming– With Option 2 Taping	1000 Units/Reel



Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option S(T1) & SL(T1)



Option S(T2) & SL(T2)

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150 <i>°</i> C
Temperature Max. (Tsmax)	200 <i>°</i> C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t_L to t_P)	3℃/second max.
Liquidous Temperature (TL)	217 <i>°</i> C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260 ℃ +0 ℃ / -5 ℃
Time (t₂) within 5℃ of 260℃	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25℃ to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.