

SPECIFICATION FOR APPROVAL

CUSTOMER:	
CUSTOMER P/N	
PART NO:	
DESCRIPTION:	SMD INDUCTOR
PRODUCTS NO:	BCRH1212Y-180M
PRODUCTS REV:	1
DATE:	2018-6-11

PURCHASER CONFIRMED					
REMARK					

PROVIDER ENGINEER DEPT.				
APPROVAL BY	CHECK BY	DRAWN BY		
		chenlinli		

誠陽實業有限公司

CHENG TAIPEI OFFICE TAIWAN CHENG YANG COMPONENT CORP

2F-1, NO. 176, Chine-Yi Road., Zhonghe District, New Taipei City, TAIWAN(R.O.C)

新北市中和區建一路176號2樓之一

POSTAL CODE: 23500

TEL NO.:+886-2-8228-0930 FAX NO.:+886-2-8228-0929 E-mail:h21803@ms29.hinet.net

寶誠電子有限公司

ZHUHAI BAO CHENG ELECTRONICSCO.,LTD

Guan Tang Industrial Park, Tang Jia Wan Town, Zhuhai City, Guangdong Province, CHINA

中國廣東省珠海市塘家灣鎮官塘工業區

POSTAL CODE: 519085

TEL NO:86-756-3383187 FAX NO:86-756-3380704 E-mail: baocheng@baocheng.biz

昆山誠陽電子有限公司

KUNSHAN CHENG YANG ELECTRONICSCO.,LTDP

Qiang-An Road., High-Tech. Industrial Park, Kunshan City, Jiangsu Province, China 江蘇省昆山市高科技工業園區強安路38號

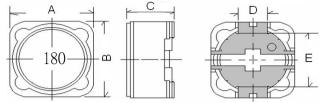
POSTAL CODE: 215300

TEL NO:86-512-57823500 FAX NO:86-512-57823503 E-mail: kscy@taiwan-chengyang.com.tw

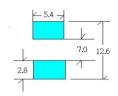
CHINA FACTORY

CHENG CHINA FACTORY

TEST DATA


ROHS Compliant

DIMENSION & ELECTRIC CHARACTER


CUSTOMER: PART NO:

DESCRIPTION: SMD INDUCTOR SERIES NO: BCRH1212Y-180M

1.MECHANIC

2.RECOMMEND LAND PATTERN DIMENSIONS

UNIT: mm

A	12.5MAX
В	12.5MAX
C	12.0MAX
D	5.0 ± 0.2
Е	7.9 ± 0.2
F	
G	
Н	

DRAWN BY: Daixin

3.SPECIFICATIONS

	L(0A)	р (,	m Ω)	Heat Rating Current	Saturation Current
Part Number	Inductance 18uH±20%	R_{dc} (1	1122)	DC Amps.Idc(A)	DC Amps. Idc(A)
	@1KHZ 0.25V	Typical	Max	Typical	Typical
BCRH1212Y-180M	18.0	16.0	19.0	6.5	7

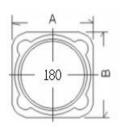
- (1). All test data is referenced to 25°C ambient.
- (2). Operating Tenperature Rangr-30°C to +100°C.
- (3). DC current(6.5A)that will cause an approximate $\triangle T$ of $40\,^{\circ}\!\mathrm{C}$.
- (4). DC current(7.0A)that will cause Lo to drop approximately 25%.
- (5). The part temperature(ambient+temp rise)should not exceed $100\,^{\circ}\mathrm{C}$ under worst case operating conditions. Circuit design, component placement, PWB trace size and thickness, airflow and other cooling provisions all affect

temperature part temperature should be verified in the end appliation.

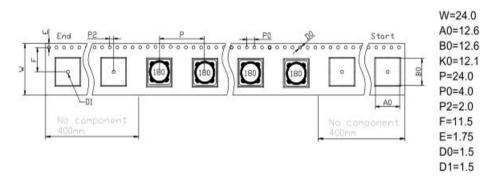
APPROVED BY: Vincent

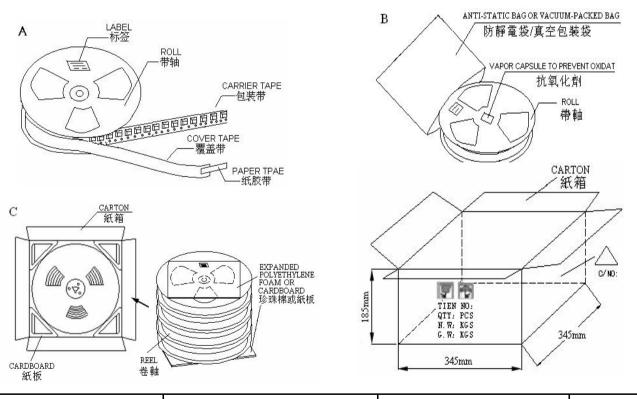
CHECKED BY: Taojun

PART NO.


BCRH1212Y SERIES

4. MARKING AND DATE CODE


4-1 Marking


The inductor is marked with a 3-digit code

Example: $18\mu\text{H} \rightarrow 180$

5.PACKING DIRECTION: (mm)

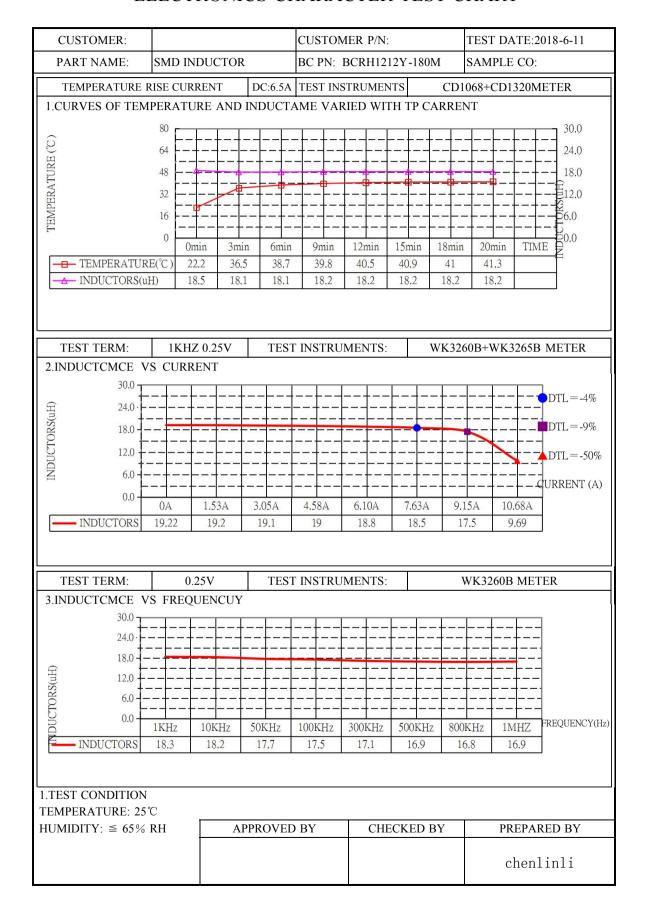
QUANTITY 200PCS 200PCS 1000PCS	Ц	NO	A	В	С
Quantity 2000 and the control of the		QUANTITY	200PCS	200PCS	1000PCS

SPECIFICATION FOR APPROVAL

MEAS. Item	Inductance (uH)	DCR (mΩ)	Isat (A) Max	Irms (A) Max	A (mm)	B (mm)	C (mm)
Spec	18.0±20%	19 MAX	L(7.0A)≥ L(0A)*0.75	6.5	12.5Max	12.5Max	12.0MAX
Test Freq.	1KHz/0.25V		1KHz/0.25V	ΔT≤40℃			
1	16.6	15.2	16.5	ок	12.15	12.15	11.58
2	17.0	15.7	17.0	ок	12,19	12.12	11.53
3	17.4	15.4	16.9	ок	12.18	12.15	11.45
4	17.2	15.5	16.8	ок	12.14	12.12	11.51
5	16.9	15.4	16.0	ок	12.15	12.15	11.54
6							
7							
8							
9							
10							
×	17.02	15.44	16.64		12.162	12.138	11.522
R	0.8	0.5	1.0		0.06	0.03	0.13

TEST INSTRUMENT:

Inductance TH2816B


DCR GKT-502BC

Isat CH2816+WR7210

Irms CH2816+WR7210

APPROVED BY: Vincent CHECKED BY: Taojun DRAWN BY: Daixin

ELECTRONICS CHARACTER TEST CHART

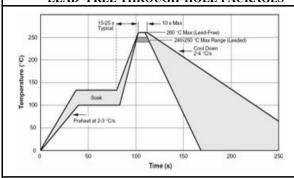
■ GENERAL CHARACT	TERISTICS page. 1		
Operation Temperature	-40°C to +125°C (Includes temperature when the coil is heated)		
External Appearance	On visual inspection, the coil has no external defects.		
	More than 90% of terminal electrode should be covered with so	lder.	
Solder Ability Test	l After fluxing, component shall be dipped in a melted. dipped in a melted. Solder:bath at 235 °C \pm 5 °C for 5 \pm 0.5senonds	Preheating Dipping Natural cooling 235°C 150°C second 5±0.5 second	
1.Components should have not evidence of electrical and mechanical damage.			
	2.Inductance: within±10% of initial value.		
	3.Impedance: within±10% of initial value.	Preheating Dipping Natural cooling	
Heat endurance of Soldering	 Preheat:150±5°C 60seconds. Solder temperature: 250±5°C. Flux: rosin. Dip time:10±0.5seconds. 	250°C	
	After soldering of X,Y withstanding at below conditions .The te off. (Refer to figure at below)	rminal should not Peel	
Terminal Strength	5N:60sec.	x y	
Insulating Resistance	Over $100M\Omega$ at $100V$ D.C. between coil and core.		
Dielectric Strength	No dielectric breakdown at 30V D.C. for 1 minute between coil and core.		
VibrationTest	Inductance deviation within +10% after vibration for 1 hour. In each of three		
v ioration i est	orientations at sweep vibration(10-~55-~10HZ)with 1.5mmP-P		
	Inductance deviation within +10% after being dropped once wit		
Drop test	shock Attitude upon a rubber block method shock testing mach	ine, in three different	
	orientations		

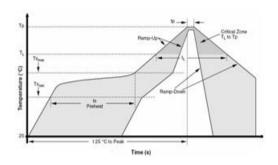
© Application Notice/Handling

- 1. Storage Conditions
- To maintain the solder ability of terminal electrodes:
- (1) Temperature and humidity conditions: less than 40°C and 70% RH.
- (2) Products should be used within 6 months.
- (3) The packaging material should be kept where no chlorine or sulfur exists in the air.
- 2. Handling
- (1) Do not touch the electrodes(soldering terminals) with fingers as this may lead to deterioration of solderability.
- (2) The use of tweezers or vacuum pick-ups is strongly recommended for individual components.
- (3) Bulk handling should ensure that abrasion and mechanical shock are minimized.

■ GENERAL CHARACTER	RISTICS	page. 2
TEST	Required Characteristics	Test Method/Condition
High Temperature StorageTest Reference documents: MIL-STD-202G Method108A	 No case deformation or change in appearance △L/L≤10% △Q/Q≤30% △DCR/DCR≤10% 	High temperature 25°C 0°C High temperature 1H 1H 96H Test Time Temperature: 125 °C±2°C Time: 96±2 hours. Tested not less than 1 hour, nor more than 2 hours at room.
Low Temperature Storage Test Reference documents: IEC 68-2-1A 6.1 6.2	 No case deformation or change in appearance △L/L≤10% △Q/Q≤30% △DCR/DCR≤10% 	Temperature: -40°C±2°C Time:96±2 hours.
150 00 2 111 0.1 0.2		Tested not less than 1 hour, nor more than 2 hours at room.
Humidity Test Reference documents: MIL-STD-202G Method103B	 No case deformation or change in appearance ΔL/L≤10% ΔQ/Q≤30% ΔDCR/DCR≤10% 	1. Dry oven at a temperature of 40°C±2°C for 96hours 2. Measurements At the end of this period 3. Exposure: Temperature: 40°C±2°C. Humidity:93±2hoyrs. 4. Tested while the chamber. 5. Tested not less than 1 hour. Nor more than 2 hours at room temperature.
Thermal Shock Test Reference documents: MIL-STD-202G Method107G	 No case deformation or change in appearance △L/L≤10% △Q/Q≤30% △DCR/DCR≤10% 	First-40°C for 30 Minutes, last 125°C for 30 Minutes as 1 cycle. Go through 20 cycles.

■Application Notice/Handling


- (1) Temperature and humidity conditions: less than 40°C and 70% RH.
- (2) Products should be used within 6 months.
- (3) The packaging material should be kept where no chlorine or sulfur exists in the air.
- (4) Do not touch the electrodes (soldering terminals) with fingers as this may lead to deterioration of solder ability
- (5) The use of tweezers or vacuum pick-ups is strongly recommended for individual components.
- (6) Bulk handling should ensure that abrasion and mechanical shock are minimized.


■ THE CONDITION OF REFLOW (RECOMMENDATION)

page. 3

TYPICAL WAVE SOLDER PROFILE FOR LEADED AND LEAD -FREE THROUGH-HOLE PACKAGES

TYPICAL IR REFLOW PROFILE FOR LEADED AND LEAD -FREE SURFACE MOUNT PACKAGES

IPC/JEDEC J-STD-020C, Figure 5-1

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate (Ts _{max} to Tp)	3 °C/second max.	3 °C/second max.
Preheat ± Temperature Min (Ts _{min}) ± Temperature Max (Ts _{max}) ± Time (ts _{min} to ts _{max})	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-180 seconds
Time maintained above: ± Temperature (T _L) ± Time (t _L)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak/Classification Temperature (Tp)	See Table 4.1	See Table 4.2
Time within 5 °C of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6 °C/second max.	6 °C/second max.
Time 25 °C to Peak Temperature	6 minutes max.	8 minutes max.

Table 4. Classification Reflow Profiles (per IPC/JEDEC J-STD-020C, Table 5.2)

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Package Thickness	Volume mm³ <350	Volume mm³ ≥350
<2.5 mm	240 +0/-5 °C	225 +0/-5 °C
≥2.5 mm	225 +0/-5 °C	225 +0/-5 °C

Table 5. SnPb Eutectic Process - Package Peak Reflow Temperatures (per IPC/JEDEC J-STD-020C, Table 4.1)

Package Thickness	Volume mm³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6 mm	260 + 0 °C *	260 + 0 °C *	260 + 0 °C *
1.6 mm - 2.5 mm	260 + 0 °C *	250 + 0 °C *	245 + 0 °C *
≥2.5 mm	250 + 0 °C *	245 + 0 °C *	245 + 0 °C *

^{*} Tolerance: Process compatibility is up to and including the stated classification temperature (this means Peak reflow temperature + 0 °C. For example 260 °C + 0 °C) at the rated MSL level.

Table 6. Pb-free Process - Package Classification Reflow Temperatures (per IPC/JEDEC J-STD-020C, Table 4.2)

Note 1: The profiling tolerance is + 0 °C, -X °C (based on machine variation capability) whatever is required to control the profile process but at no time will it exceed -5 °C. Process compatibility at the peak reflow profile temperatures as defined in Table 4.2.

Note 2: Package volume excludes external terminals (balls, bumps, lands, leads) and/or nonintegral heat sinks.

Note 3: The maximum component temperature reached during reflow depends on package thickness and volume. The use of convection

reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of

SMD packages may still exist.

Note 4: Components intended for use in a "lead-free" assembly process shall be evaluated using the "lead-free" classification temperatures and profiles defined in Tables 4.1, 4.2 and 5.2 whether or not lead free.