

PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES

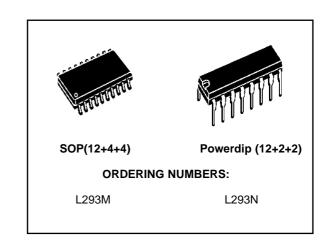
600mA OUTPUT CURRENT CAPABILITY PER CHANNEL

1.2A PEAK OUTPUT CURRENT (non repetitive) PER CHANNEL

ENABLE FACILITY

OVERTEMPERATURE PROTECTION

LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)

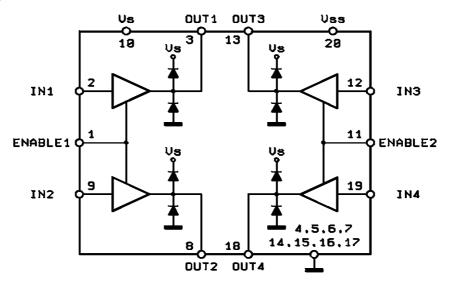

INTERNAL CLAMP DIODES

DESCRIPTION

The Device is a monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power transistors.

To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included.

This device is suitable for use in switching applications at frequencies up to 5 kHz.

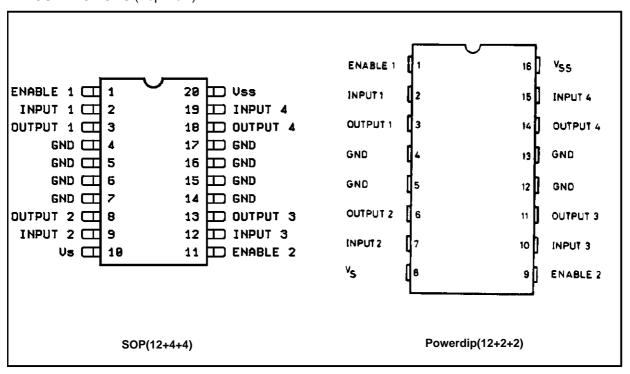

The L293D is assembled in a 16 lead plastic packaage which has 4 center pins connected together and used for heatsinking

The L293DD is assembled in a 20 lead surface mount which has 8 center pins connected together and used for heatsinking.

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
L293N	DIP16	L293D	TUBE	1000/box
L293M/	SOP20	L293DD	REEL	2000/reel

BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	36	V
V _{SS}	Logic Supply Voltage	36	V
Vi	Input Voltage	7	V
V _{en}	Enable Voltage	7	V
Io	Peak Output Current (100 μs non repetitive)	1.2	Α
P _{tot}	Total Power Dissipation at T _{pins} = 90 °C	4	W
T_{stg} , T_j	Storage and Junction Temperature	- 40 to 150	°C

PIN CONNECTIONS (Top view)

THERMAL DATA

Symbol	Decription	DIP	SOP	Unit
R _{th j-pins}	Thermal Resistance Junction-pins max.	_	14	°C/W
R _{th j-amb}	Thermal Resistance junction-ambient max.	80	50 (*)	°C/W
R _{th j-case}	Thermal Resistance Junction-case max.	14	-	

^(*) With 6sq. cm on board heatsink.

ELECTRICAL CHARACTERISTICS (for each channel, $V_S = 24 \text{ V}$, $V_{SS} = 5 \text{ V}$, $T_{amb} = 25 ^{\circ}\text{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (pin 10)		V _{SS}		36	V
V_{SS}	Logic Supply Voltage (pin 20)		4.5		36	V
I _S	Total Quiescent Supply Current	$V_i = L$; $I_O = 0$; $V_{en} = H$		2	6	mA
	(pin 10)	$V_i = H$; $I_O = 0$; $V_{en} = H$		16	24	mA
		V _{en} = L			4	mA
I _{SS}	Total Quiescent Logic Supply	$V_i = L$; $I_O = 0$; $V_{en} = H$		44	60	mA
	Current (pin 20)	$V_i = H$; $I_O = 0$; $V_{en} = H$		16	22	mA
		V _{en} = L		16	24	mA
V_{IL}	Input Low Voltage (pin 2, 9, 12, 19)		-0.3		1.5	٧
V_{IH}	Input High Voltage (pin 2, 9,	V _{SS} ≤ 7 V	2.3		V _{SS}	V
	12, 19)	V _{SS} > 7 V	2.3		7	V
I _{IL}	Low Voltage Input Current (pin 2, 9, 12, 19)	V _{IL} = 1.5 V			- 10	μА
Іін	High Voltage Input Current (pin 2, 9, 12, 19)	$2.3~\text{V} \leq \text{V}_{\text{IH}} \leq \text{V}_{\text{SS}} - 0.6~\text{V}$		30	100	μА
V _{en L}	Enable Low Voltage (pin 1, 11)		-0.3		1.5	V
V _{en H}	Enable High Voltage	V _{SS} ≤ 7 V	2.3		V_{SS}	V
	(pin 1, 11)	V _{SS} > 7 V	2.3		7	V
l _{en L}	Low Voltage Enable Current (pin 1, 11)	V _{en L} = 1.5 V		- 30	- 100	μА
l _{en H}	High Voltage Enable Current (pin 1, 11)	$2.3~\text{V} \leq \text{V}_{\text{en H}} \leq \text{V}_{\text{SS}} - 0.6~\text{V}$			± 10	μА
V _{CE(sat)H}	Source Output Saturation Voltage (pins 3, 8, 13, 18)	$I_{O} = -0.6 \text{ A}$		1.4	1.8	V
$V_{\text{CE(sat)L}}$	Sink Output Saturation Voltage (pins 3, 8, 13, 18)	I _O = + 0.6 A		1.2	1.8	V
V_{F}	Clamp Diode Forward Voltage	I _O = 600nA		1.3		V
t _r	Rise Time (*)	0.1 to 0.9 V _O		250		ns
t _f	Fall Time (*)	0.9 to 0.1 V _O		250		ns
t _{on}	Turn-on Delay (*)	0.5 V _i to 0.5 V _O		750		ns
t _{off}	Turn-off Delay (*)	0.5 V _i to 0.5 V _O		200		ns

^(*) See fig. 1.

TRUTH TABLE (one channel)

Input	Enable (*)	Output	
Н	Н	Н	
L	Н	L	
Н	L	Z	
L	L	Z	

Z = High output impedance

Figure 1: Switching Times

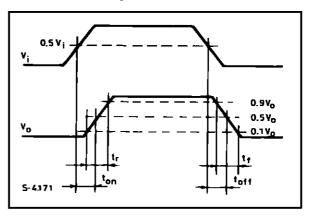
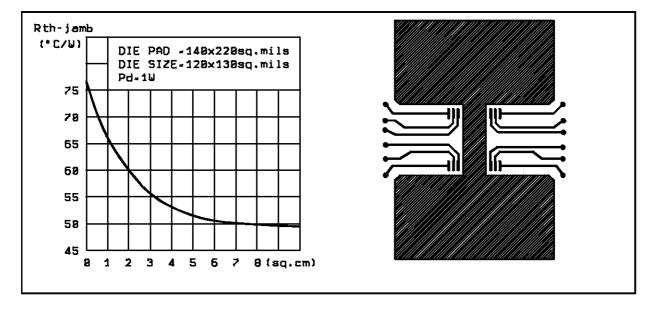



Figure 2: Junction to ambient thermal resistance vs. area on board heatsink (SOP12+4+4 package)

^(*) Relative to the considered channel

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

http://www.hgsemi.com.cn 5 2018 AUG