

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS **PRODUCT SPECIFICATION**

規格書

CUSTOMER :

(客戶):志盛翔

DATE :

(日期):2020-09-09

CATEGORY (品名) DESCRIPTION (型号) VERSION (版本) Customer P/N	 ALUMINUM ELECTROLYTIC CAPACITORS GF 25V22μF(φ5x11) 01
SUPPLIER	· :

SUPPLIER			CUST	FOMER
PREPARED (拟定)	CHECKED (审核)		APPROVAL (批准)	SIGNATURE (签名)
邓文文	付婷婷			

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SPECIFICATION						ALTERN	ATION HIS	STORY
Rev.	Date	GF SEF Mark	RIES Pag	-	Contents	Purpose	Drafter	Approver
	Version		01				Page 1	

MAN YUE ELECTRONICS COMPANY LIMITED	ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES		SA	MXON	
Table 1 Product Dimensions and Char	acteristics				Unit: mm
← L+1.5/-1.0 -	→				
		C. I.	D	5	
		pe Code	L	11	
D±0.5	F±0.5		F	2.0	
II 1 1		Туре	Н	3.5	
		• I			

Table 1:

Part No.	(Vdc)			Temp.	(120Hz,	Current	Current at 105℃	at 20℃	Load lifetime	(n	nm)		Sleeve
. Part No. (Vdc) (µF) tolerance rang	range(℃)	(120fi2, 20°C)	(μA,2min)	100kHz (mA rms)	100kHz (Ωmax)	(Hrs)	$D \times L$	F	фd	Siceve			
GF226M1ED11CB**P	25	22	-20%~+20%	-40~105	0.14	5.5	100	1.30	2000	5X11	2.0	0.5	PET
	I												
	F226M1ED11CB**P	F226M1ED11CB**P 25	F226M1ED11CB**P 25 22	F226M1ED11CB**P 25 22 -20%~+20%	F226M1ED11CB**P 25 22 -20%~+20% -40~105	F226M1ED11CB**P 25 22 -20%~+20% -40~105 0.14	F226M1ED11CB**P 25 22 -20%~+20% -40~105 0.14 5.5	F226M1ED11CB**P 25 22 -20%~+20% -40~105 0.14 5.5 100	F226M1ED11CB**P 25 22 -20%~+20% -40~105 0.14 5.5 100 1.30	F226M1ED11CB**P 25 22 -20%~+20% -40~105 0.14 5.5 100 1.30 2000	F226M1ED11CB**P 25 22 -20%~+20% -40~105 0.14 5.5 100 1.30 2000 5X11	F226M1ED11CB**P 25 22 -20%~+20% -40~105 0.14 5.5 100 1.30 2000 5X11 2.0	F226M1ED11CB**P 25 22 -20%~+20% -40~105 0.14 5.5 100 1.30 2000 5X11 2.0 0.5

Version 01	Page 2
------------	--------

 Application Part Number System 	Sheet
	4
Part Number System	4
. Part Number System	4
. Construction	5
. Characteristics	5~10
.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
L3 Leakage current	
l.4 tanδ	
1.5 Terminal strength	
.6 Temperature characteristic	
1.7 Load life test	
.8 Shelf life test	
1.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test	
4.15 Vent test	
.16 Maximum permissible (ripple current)	
. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	11
Attachment: Application Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

1. Application

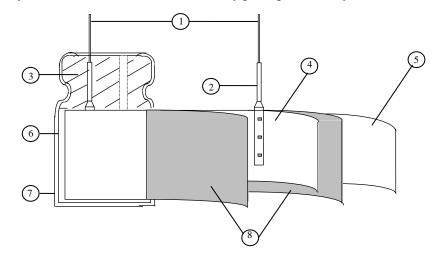
This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Part Number System 123 456 7 89 101112 1314 1516 17 Ρ EGS 1 0 5 м 1 H **D**1 1 TC S А SAMXON SLEEVE PRODUCT LINE MATERIAL VOLTAGE SERIES CAPACITANCE CASE SIZE TOI TYPE Feature Code Cap(MFD) Code Tolerance (%) Code Voltage (W.V.) Code Case Size SAMXON Product Lin ries ESM EKF ESS EKS 0D (d) Co 3 B 3.5 1 4 C 5 D 6.3 E For internal use only RR Radial bulk 0.1 104 ±5 J 2.5 0E (The product lines 0G 4 we have H.A.B.C.D. Ammo Taping 0.22 224 EGS 6.3 OJ EGS EKM EKG EOM EZS EGF ESF ±10 к E,M or 0,1,2,3,4,5,9) 8 0K 2.0mm Pitch τт 0.33 334 10 1A L 13 13.5 13.5 14 4.5 c 12 ±15 12.5 1B J V τυ 2.5mm Pitch 0.47 474 16 1C м +20 20 1D 3.5mm Pitch тν ESF EGT EGK EGE EGD EGC 105 Sleeve Material 1 Code 16.5 16.5 25 1E Р PET 5.0mm Pitch тс 30 11 2.2 225 Ν ±30 18.5 32 13 ERS ERF ERL ERR 35 1V Lead Cut & Form 3.3 335 -40 w ⋚ 40 1G 25 30 34 35 40 СВ-Туре СВ 42 1M 4.7 475 -20 0 ERT ERE ERD ERH EBD А 50 1H СЕ-Туре CE 10 106 57 1L -20 +10 63 **1**J С <u>42</u> 45 HE HE-Type 22 226 71 15 40 51 63.5 76 80 90 100 ERA ERB ERC EFA -20 +40 75 1**T** х KD-Type KD 33 336 80 1K 85 1R -20 +50 FD-Type FD s 476 ENH ERW ERY ELP EAP 47 90 19 Code 45 54 57 77 72 112 118 12 18 12 25 20 20 30 34 35 35 100 2A 4.5 -10 EH-Type EH в 100 107 120 20 5.4 125 2B PCB Termial $\begin{array}{r} 7\\ \hline 7.7\\ \hline 10.2\\ \hline 11\\ \hline 11.5\\ \hline 12\\ \hline 2.5\\ \hline 13\\ \hline \\ 13\\ \hline \end{array}$ -10 +20 227 220 EQP EDP v 150 2Z 160 2C sw ETP EHP EUP 337 330 -10 +30 180 2P Q 2D 200 Snap-in sx EKP EEP EFP ESP EVP 470 477 -10 +50 215 22 т 220 2N 13.5 sz 2200 228 -5 +10 230 23 20 25 29.5 Е 250 2E Lug SG 22000 229 275 2Т 30 31.5 35 35.5 -5 +15 F 300 21 05 35.5 50 80 100 105 110 120 30 40 33000 339 310 2R -5 +20 G 50 80 1L 1M 1N 1P 06 2F 315 EWS EWH EWL EWB VSS 47000 479 2U 330 0 +20 R 350 Т5 2V 10T 100000 Screw 2X 0 +30 360 0 т6 VNS 375 2Q 150000 15T 10 1R 1E 2Y 40 50 VKS VKM VRL VNH 385 +50 Т D5 400 2G 220000 22T 15 1F 1T +5 +15 z 420 2M D6 450 2W VRF 330000 33T +5 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 630 2J 1500000 15M +10 +30 н 2200000 22M 3300000 33M 5

Version

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Varian	01		5
version	01		3
V CI SIOII	01		5

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

	ITEM				PERFC	RMANO	CE			
	Rated voltage									
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
	Surge voltage (SV)									<u> </u>
4.2	Nominal capacitance (Tolerance)	Condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria>	requency oltage emperat	: N ure : 20)±2℃	han 0.5V				
1.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Table</criteria></condition>	he capao then, me		-		sistor (1	kΩ ±10)Ω) in s	eries for 2
4.4	tanδ	<condition> See 4.2, Norr <criteria> Refer to Table</criteria></condition>	n Capac	itance, fo	or measur	ing frequ	iency, vo	oltage and	d tempera	ature.
4.5	Terminal strength	0.5r Over 0. < Criteri	ength of capacitor rength of pacitor, $2 \sim 3$ seco er of lea <u>nm and l</u> 5mm to a >	r, applied F Termina applied f nds, and d wire less 0.8mm	force to lls. force to b then ber Tens	ent the te t it for 9 ile force (kgf) $\overline{5} (0.51)$ $\overline{0} (1.0)$	erminal (0° to its N	1~4 mm ; original ; Bending (k 2.5 (5 (0	from the position g force N gf) 0.25) 0.51)	rubber) fo

Г

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		<condition< th=""><th></th><th>T</th><th>(°C)</th><th></th><th></th><th>T'</th><th></th><th></th></condition<>		T	(°C)			T '		
					erature(°C)		· 1	Time	.1.1 .	
			1	20 ± 2			to reach			
			2	-40(-25)			to reach		-	
			3	20±2			to reach		-	
			4	105±			to reach		-	
			5	20±2	2	Time	to reach	thermal of	equilibri	um
		<criteria< td=""><td></td><td>• 11 1.</td><td>·</td><td>4 4751 1</td><td>1</td><td></td><td>1</td><td>1 11 /</td></criteria<>		• 11 1.	·	4 4751 1	1		1	1 11 /
			shall be with			4.41he l	eakage ci	irrent me	easured s	shall not
	Temperature		n 8 times of p 5, tanδ sh	-		vit of Iter	n <i>1 1</i> The	laakaga	current	shall not
	characteristi		n the specific				11 4.41110	теакаде	current	shan not
4.6	cs		℃ (-25°C), i		e (z) ratio	shall not	exceed th	e value o	of the fol	llowing
		table.	0 (25 0), 1	mpedance	(L) Iulio I	inun not	enecce u	ie varae v		ilo wing
			Voltage (V)	6.3	10	16	25	35	50	63
			/Z+20°C	4	3	2	2	2	2	2
			/Z+20℃	8	6	4	3	3	3	3
				-	, <u> </u>		_	_	_	_
			Voltage (V)	100	-					
		-	/Z+20°C	2	_					
			/Z+20°C	3						
		For capac	itance value	$> 1000 \mu$	F. Add 0.	5 per and	ther 1000) I F for	Z-25/Z+	-20°C.
				•		-		-		
			_		Add 1.0) per ano	ther 1000	μ F for 2		
		Capacitanc	ce, tanδ, an		Add 1.0) per ano	ther 1000	μ F for 2		
		Capacitano			Add 1.0) per ano	ther 1000	μ F for 2		
		<condition< td=""><td></td><td>d impedar</td><td>Add 1.0 nce shall b</td><td>) per anot e measur</td><td>ther 1000 red at 120</td><td>µ F for 2 Hz.</td><td>Z-40°C/2</td><td>Z+20℃.</td></condition<>		d impedar	Add 1.0 nce shall b) per anot e measur	ther 1000 red at 120	µ F for 2 Hz.	Z-40°C/2	Z+20℃.
		<condition< td=""><td>on></td><td>d impedar 84-4No.4.</td><td>Add 1.0 nce shall b 13 methoo</td><td>) per anot e measur</td><td>ther 1000 red at 120 apacitor is</td><td>)Hz.</td><td>Z-40°C/Z</td><td>Z+20°C.</td></condition<>	on>	d impedar 84-4No.4.	Add 1.0 nce shall b 13 methoo) per anot e measur	ther 1000 red at 120 apacitor is)Hz.	Z-40°C/Z	Z+20°C.
		Conditi According $105 \ C \pm 2$ DC and r	on> g to IEC603 2 with DC b ripple peak	d impedar 34-4No.4. ias voltage voltage sł	Add 1.0 nce shall b 13 method e plus the mall not estimated	l per anot e measur ls, The ca rated ripp	ther 1000 red at 120 pacitor is le curren e rated w	by F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (The voltage)	Z+20°C. erature of he sum of Then the
		Condition According $105 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	on> g to IEC6033 2 with DC bi ripple peak hould be test	d impedar 84-4No.4. as voltage voltage sl ed after 16	Add 1.0 nce shall b 13 method e plus the r hall not e: 5 hours red	l per anot e measur ls, The ca rated ripp	ther 1000 red at 120 pacitor is le curren e rated w	by F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (The voltage)	Z+20°C. erature of he sum of Then the
	Load	Condition According $105 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the	d impedar 84-4No.4. as voltage voltage sl ed after 16	Add 1.0 nce shall b 13 method e plus the r hall not e: 5 hours red	l per anot e measur ls, The ca rated ripp	ther 1000 red at 120 pacitor is le curren e rated w	by F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (The voltage)	Z+20°C. erature of he sum of Then the
4.7	life	Conditional According 105 ℃ ± 2 DC and r product sho result sho	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the a>	d impedar 84-4No.4. as voltage voltage sh ed after 16 following	Add 1.0 nce shall b 13 method e plus the p hall not ex 6 hours red g table:	s, The ca rated ripp acceed the	ther 1000 red at 120 apacitor is le curren e rated w time at at	by F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (The voltage)	Z+20°C. erature of he sum of Then the
4.7		Conditional According 105 ℃ ± 2000 C and result show a constrained of the characterization of the	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the a> acteristic sha	d impedar 84-4No.4. as voltage voltage sl ed after 16 following <u>ill meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours red g table: e followin	ls, The ca ated ripp acceed the covering	ther 1000 red at 120 apacitor is le curren e rated w time at at	μ F for 2 DHz. s stored a t for Tab vorking v mospher	Z-40°C/Z at a temp ble 1. (The voltage)	Z+20°C. erature of he sum of Then the
4.7	life	$<$ ConditionAccording $105 \ \ C \pm 2$ DC and rproduct shresult sho $<$ CriteriaThe charaLe	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the a> acteristic sha akage currer	d impedar 84-4No.4. as voltage voltage sl ed after 16 following ill meet th nt	Add 1.0 nce shall b 13 method e plus the n hall not e: 6 hours red g table: <u>e followin</u> Value in	s, The car ated ripp acceed the overing <u>g require</u> 4.3 shall	ther 1000 ed at 120 apacitor is le curren e rated w time at at ements. be satisf	μ F for 2 DHz. s stored a t for Tab rorking v mospher	Z-40°C/Z at a temp ble 1. (The voltage)	Z+20°C. erature of he sum of Then the
4.7	life	<condition< th="">According$105 \ C \pm 2$DC and rproduct shocriteriaThe charaLeCa</condition<>	on> g to IEC6033 2 with DC bi- ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl	d impedar 84-4No.4. as voltage voltage sl ed after 16 following ill meet th nt	Add 1.0 nce shall b 13 method e plus the p hall not e: 6 hours red g table: e followin Value in Within	b per anote e measure ls, The car trated ripp acceed the covering <u>g require</u> 4.3 shall 25% of	apacitor is le curren e rated w time at at ements. be satisf	μ F for 2 DHz. s stored a t for Tab vorking v mospher ied	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit	Z+20°C. erature of he sum of Then the ions. The
4.7	life	<condition< th="">According$105 \ C \pm 2$DC and rproduct shresult sho<criteria< td="">The charaLeCatan</criteria<></condition<>	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl að	d impedar 84-4No.4. as voltage voltage sl ed after 16 following ill meet th nt	Add 1.0 nce shall b 13 method e plus the f hall not e 5 hours red g table: e followin Value in Within =	g require 4.3 shall 25% of 25% of	ther 1000 red at 120 upacitor is le curren e rated w time at at ements. be satisf initial va 0% of the	μ F for 2 DHz. s stored a t for Tab gorking v mospher ied alue. e specifie	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit	Z+20°C. erature of he sum of Then the ions. The
4.7	life	<condition< th="">According$105 \ C \pm 2$DC and rproduct shresult sho<criteria< td="">The charaLeCatan</criteria<></condition<>	on> g to IEC6033 2 with DC bi- ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl	d impedar 84-4No.4. as voltage voltage sl ed after 16 following ill meet th nt	Add 1.0 nce shall b 13 method e plus the p hall not e: 6 hours red g table: e followin Value in Within	g require 4.3 shall 25% of 25% of	ther 1000 red at 120 upacitor is le curren e rated w time at at ements. be satisf initial va 0% of the	μ F for 2 DHz. s stored a t for Tab gorking v mospher ied alue. e specifie	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit	Z+20°C. erature of he sum of Then the ions. The
4.7	life	$<$ ConditionAccording $105 \ C \pm 2$ DC and rproduct shresult sho $<$ CriteriaThe charaLeCatanAp	on> g to IEC6033 2 with DC bi- ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl ao ppearance	d impedar 84-4No.4. as voltage voltage sl ed after 16 following ill meet th nt	Add 1.0 nce shall b 13 method e plus the f hall not e 5 hours red g table: e followin Value in Within =	g require 4.3 shall 25% of 25% of	ther 1000 red at 120 upacitor is le curren e rated w time at at ements. be satisf initial va 0% of the	μ F for 2 DHz. s stored a t for Tab gorking v mospher ied alue. e specifie	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit	Z+20°C. erature of he sum of Then the ions. The
4.7	life	$<$ ConditionAccording $105 \ C \pm 3$ DC and rproduct shresult sho $<$ CriteriaThe charaLeaCatanApp $<$ Condition	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl ao opearance	d impedar 84-4No.4. ias voltage voltage sl ed after 16 following ill meet th nange	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within = Not more There sh	b per anot e measur ls, The ca ated ripp acced the covering <u>g require</u> 4.3 shall <u>25% of</u> than 150 all be no	ther 1000 ed at 120 upacitor is le curren e rated w time at at ements. be satisfi initial va leakage o	μ F for 2 http://www.stored.ac. s stored a t for Tab yorking w mospher ied alue. specifie of electro	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit ed value.	Z+20°C. erature of he sum of Then the ions. The
4.7	life	<condition< th=""><math>According$105 \ C \pm 2$$DC$ and rproduct shresult sho<criteria< td="">The charaLeaLaLaCatanAppendix<condition< td="">The capacity</condition<></criteria<></math></condition<>	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl ab opearance	d impedar 84-4No.4. as voltage voltage sl ed after 16 following all meet th nange	Add 1.0 nce shall b 13 method e plus the n hall not e: 5 hours red g table: e followin Value in Within = Not more There sh	s, The car ated ripp acceed the covering <u>g require</u> 4.3 shall <u>25% of</u> all be no	ther 1000 ed at 120 upacitor is le curren e rated w time at at ements. be satisfi initial va 0% of the leakage of ed at a te	μ F for 2 http://www.stored.ac. s stored a t for Tab yorking w mospher ied alue. specifie of electroc mperatur	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit ed value. blyte. re of 105	$\pm 2^{\circ}C$ for
4.7	life	<condition< th=""><math>According$105 \ C \pm 2$$DC$ and rproduct shresult sho<criteria< td="">The charaLeCatanAp<condition< td="">The capacity$1000+48/2$</condition<></criteria<></math></condition<>	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl ao opearance	d impedar 84-4No.4. as voltage voltage sh ed after 16 following ill meet th nt nange	Add 1.0 nce shall b 13 method e plus the n hall not e: 6 hours red g table: <u>e followin</u> Value in Within <u>=</u> Not more There sh ith no volta is period t	b per anot e measur as, The ca ated ripp acceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>all be no</u> age applic he capaci	ther 1000 ed at 120 apacitor is le curren e rated w time at at ments. be satisfi initial va 0% of the leakage of ed at a te itors shal	μ F for 2 Hz. s stored a t for Tab rorking v mospher ied alue. specific of electro mperatur l be remo	Z-40°C/2 at a temp ole 1. (Tr voltage) ic condit ed value. olyte.	$\pm 2^{\circ}C$ for m the tes
4.7	life	<condition< th=""><math>According$105 \ C \pm 2$$DC$ and rproduct shresult sho<criteria< td="">The charaLeaCatanAp<condition< td="">The capacitie$1000+48/chamber = 1000$</condition<></criteria<></math></condition<>	on> g to IEC6033 2 with DC bi ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl nδ opearance tors are then 0 hours. Fol	d impedar 84-4No.4. as voltage voltage sh ed after 16 following ill meet th nange	Add 1.0 nce shall b 13 method e plus the p hall not ex 6 hours red g table: <u>e followir</u> Value in Within = <u>Not more</u> There sh th no volta is period t	b per anot e measur ated ripp acceed the covering <u>g require</u> 4.3 shall 25% of all be no he capaci room ten	ther 1000 red at 120 apacitor is le curren e rated w time at at <u>be satisfi</u> initial va <u>0% of the</u> leakage of ed at a te itors shal aperature	μ F for 2 Hz. s stored a t for Tab corking v mospher ied alue. specifie of electro mperatur l be remo	Z-40°C/2 at a temp ble 1. (Ti voltage) ic condit condit ed value. blyte. re of 105 poved from hours. 1	$\pm 2^{\circ}C$ for m the tess mean of the sum of the sum of the sum of the the sum of the the second se
4.7	life test	<condition< th=""><math>According$105 \ C \pm 3$$DC$ and rproduct slresult sho<criteria< td="">The charaLeaCatanApp<condition< td=""><condition< td="">The capacitic$1000+48/c$chamber ashall be capplied for</condition<></condition<></criteria<></math></condition<>	on> g to IEC6033 2 with DC bi- ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl ab opearance tors are then 0 hours. Fol and be allow connected to or 30min. Af	d impedar 34-4No.4. as voltage sh ed after 16 following all meet th nange	Add 1.0 nce shall b 13 method e plus the p hall not e: 6 hours red g table: e followin Value in Within = Not more There sh ith no volta is period t bilized at limiting re	b per anot e measur e measur ated ripp acceed the covering <u>g require</u> 4.3 shall <u>c 25% of</u> <u>e than 150</u> all be no all be no age applic the capaci	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit ed value. blyte. re of 105 boved from hours. I D.C. rate	$\pm 2^{\circ}C$ for m the tes Next they d voltage
	life test Shelf	<condition< th=""><math>According$105 \ C \pm 3$$DC$ and rproduct shresult sho<criteria< td="">The charaLeaCatanAppendix<condition< td="">The capacity$1000+48/$chamber ashall be c</condition<></criteria<></math></condition<>	on> g to IEC6033 2 with DC bi- ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl ab opearance tors are then 0 hours. Fol and be allow connected to or 30min. Af	d impedar 34-4No.4. as voltage sh ed after 16 following all meet th nange	Add 1.0 nce shall b 13 method e plus the p hall not e: 6 hours red g table: e followin Value in Within = Not more There sh ith no volta is period t bilized at limiting re	b per anot e measur e measur ated ripp acceed the covering <u>g require</u> 4.3 shall <u>c 25% of</u> <u>e than 150</u> all be no all be no age applic the capaci	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit ed value. blyte. re of 105 boved from hours. I D.C. rate	$\pm 2^{\circ}C$ for m the tes Next they d voltage
	life test Shelf life	<condition< th=""><math>According$105 \ C \pm 3$$DC$ and rproduct slresult sho<criteria< td="">The charaLeaCatanApp<condition< td=""><condition< td="">The capacitic$1000+48/c$chamber ashall be capplied for</condition<></condition<></criteria<></math></condition<>	on> g to IEC6033 2 with DC bi- ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl ab opearance tors are then 0 hours. Fol and be allow connected to or 30min. Af	d impedar 34-4No.4. as voltage sh ed after 16 following all meet th nange	Add 1.0 nce shall b 13 method e plus the p hall not e: 6 hours red g table: e followin Value in Within = Not more There sh ith no volta is period t bilized at limiting re	b per anot e measur e measur ated ripp acceed the covering <u>g require</u> 4.3 shall <u>c 25% of</u> <u>e than 150</u> all be no all be no age applic the capaci	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit ed value. blyte. re of 105 boved from hours. I D.C. rate	$\pm 2^{\circ}C$ for m the tes Next they d voltage
	life test Shelf life	<condition< th=""><math>According$105 \ C \pm 3$$DC$ and rproduct slresult sho<criteria< td="">The charaLeaCatanApp<condition< td=""><condition< td="">The capacitic$1000+48/c$chamber ashall be capplied for</condition<></condition<></criteria<></math></condition<>	on> g to IEC6033 2 with DC bi- ripple peak hould be test uld meet the a> acteristic sha akage currer pacitance Cl ab opearance tors are then 0 hours. Fol and be allow connected to or 30min. Af	d impedar 34-4No.4. as voltage sh ed after 16 following all meet th nange	Add 1.0 nce shall b 13 method e plus the p hall not e: 6 hours red g table: e followin Value in Within = Not more There sh ith no volta is period t bilized at limiting re	b per anot e measur e measur ated ripp acceed the covering <u>g require</u> 4.3 shall <u>c 25% of</u> <u>e than 150</u> all be no all be no age applic the capaci	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (Tr voltage) ic condit ed value. blyte. re of 105 boved from hours. I D.C. rate	$\pm 2^{\circ}C$ for m the tes Next they d voltage

		<criteria></criteria>	
		The characteristic shall meet the	
		Leakage current	Value in 4.3 shall be satisfied
	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value.
4.8	life	tanδ	Not more than 150% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
		**	red more than 1 year, the leakage current may
		increase. Please apply voltage th	rough about 1 k Ω resistor, if necessary.
		<condition></condition>	
			pacitor connected with a $(100 \pm 50)/C_R(k\Omega)$ resistor.
			to 1000 cycles, each consisting of charge of 30 \pm 5s,
		followed discharge of 5 min 30s	
		The test temperature shall be 1.	
		C_R :Nominal Capacitance (μ F))
1.0	Surge	<criteria></criteria>	Viet many that the second field and here
4.9	test		Not more than the specified value.
		1 0	Within $\pm 15\%$ of initial value.
			Not more than the specified value.
		**	There shall be no leakage of electrolyte.
		Attention:	
		over voltage as often applied.	at abnormal situation only. It is not applicable to such
		over voltage as often applied.	
4.10	Vibration test	perpendicular directions. Vibration frequency range Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter great in place with a bracket. 4mm or less	 applied for 2 hours in each 3 mutually i 10Hz ~ 55Hz i 10Hz ~ 55Hz ~ 10Hz in about 1 minute iter than 12.5mm or longer than 25mm must be fixed
		Inner construction No a No a No a Appearance of ex	ns shall be tested: Intermittent contacts, open or short circuiting. damage of tab terminals or electrodes. mechanical damage in terminal. No leakage lectrolyte or swelling of the case. markings shall be legible.

Version	01		8

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

9

		<condition></condition>				
		The capacitor shall be test	ted und		conditions:	
		Soldering temperature		: 245±3°C		
Soldarability		Dipping depth		: 2mm	1	
4.11	Solderability test	Dipping speed		: 25±2.5mm	/S	
	test	Dipping time <criteria></criteria>		: 3±0.5s		
		<criteria></criteria>		A minimum	n of 95% of the surface	haing
		Coating quality		immersed	101 75 % of the surface	being
		<condition></condition>				
		Terminals of the capacitor				
		1 seconds or $400 \pm 10^{\circ}$ C fo	$r3^{+1}_{-0}se$	econds to 1.5~2.0	mm from the body of c	capacitor .
		Then the capacitor shall b	e left u	under the normal t	emperature and norma	l humidity
	Resistance to	for 1~2 hours before meas	sureme	ent.	-	
4.12	solder heat	<criteria></criteria>				
	test	Leakage current		Not more than the	ne specified value.	
		Capacitance Change		Within $\pm 10\%$ o	of initial value.	
		tanδ		Not more than the	he specified value.	
		Appearance		There shall be no	o leakage of electrolyt	e.
		<condition></condition>				
		Temperature Cycle:Accor	•		-	shall be
		placed in an oven, the cor				
			emperat	ture	Time	
		(1)+20℃			≤ 3 Minutes	
	Change of	(2)Rated low tempera	ature (-	40°C)(-25°C)	30 ± 2 Minutes	
4.13	temperature	(3)Rated high temper	ature (+105°C)	30 ± 2 Minutes	
	test	(1) to (3)=1 cycle, tot	tal 5 cy	vcle		
		<criteria></criteria>				
		The characteristic shall m	eet the	following require	ement	_
		Leakage current	No	ot more than the s	pecified value.	
		tanδ	No	Not more than the specified value.		
		Appearance	Th	ere shall be no le	akage of electrolyte.	
		<condition></condition>				
		Humidity Test:				
		According to IEC60384-4		-	-	
		hours in an atmosphere of			C, the characteristic cl	hange shall
		meet the following require	ement.			
		< <u>Criteria></u>	Notn	nore then the energy	ified value	
4.14	Damp heat	Leakage current		nore than the spectrum $\pm 20\%$ of initi		
	test	Capacitance Change tanδ			f the specified value.	
					age of electrolyte.	
		Appearance	There		ige of electrolyte.	

Version	01		Page
---------	----	--	------

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

4.15	Vent test	<criteria> The vent shall operate with no pieces of the capacitor and/or c</criteria>	th its polar ble is appli rent (A) L 0 dangerous	ity reversed ied.	to a DC po	ower source	e. Then a
4.16	Maximum permissible (ripple current)	<condition> The maximum permissible rip at 120Hz and can be applied Table-1 The combined value of D.C v rated voltage and shall not re Frequency Multipliers: Coefficient Freq. (Hz) Cap. (μ F) ~180 220~560 680~1800 2200~3900 4700</condition>	at maximu voltage and	im operating I the peak A	g temperatu	re	cceed the

Version 01 Page 10	Version	01			10
--------------------	---------	----	--	--	----

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
Heavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
	Polybrominated biphenyls (PBB)
Brominated .	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	pounds(TBT)
Triphenyltin con	npounds(TPT)
Asbestos	
Specific azo con	npounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	ber
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzotr	riazole

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters

 At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $\tan \delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01		Page	12
------------	--	------	----

GF SERIES	
 (6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relexceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrica (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards Tighten the terminal and mounting bracket screws within the torque range specified in the 	al short.
 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. Between the cathode and the case (except for axially leaded B types) and between the anod Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal 	
1.7 The Product endurance should take the sample as the standard.	
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products	s of sampling.
1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes ar capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and the	
CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failu circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation i	
 2.Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If with a resistor with a value of about 1kΩ. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This rated voltage in series with a resistor of approximately 1kΩ. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using content of the result. 	s can be corrected by gradually applying dropped capacitors.
 2.2 Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid st Ensure that the auto insertion equipment lead clinching operation does not stress the capacit capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, shore 	itor leads where they enter the seal of the
 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead w (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacite (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl stress 	vire where it enters the capacitor seal. tor leads.

- 2.4 Flow Soldering
- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

	Version	01		Page	14
--	---------	----	--	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the

polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01	Page	15
------------	------	----