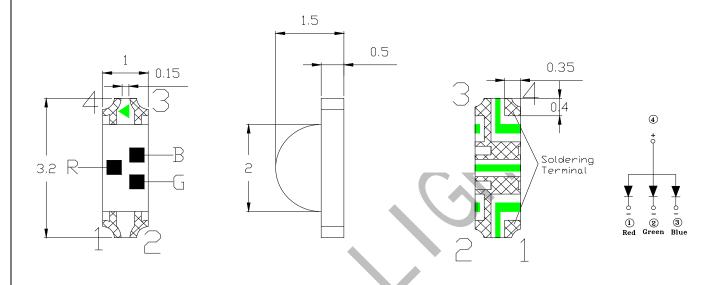


PARA LIGHT ELECTRONICS CO., LTD.

11F., No. 8, Jiankang Rd., Zhonghe Dist., New Taipei City 235, Taiwan,Tel: 886-2-2225-3733Fax: 886-2-2225-4800E-mail: para@para.com.twwww.paralighttaiwan.com

PART NO.: L-S11F1RGBCT-CA-XM

REV: <u>A / 2</u>


CUSTOMER'S APPROVAL:	DCC:			
DRAWING NO.: DS-80-19-0001G	DATE: 2020-3-04	PAGE	1 of 15	

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

PACKAGE OUTLINE DIMENSIONS

Notes:

- 1. 1chip: Red; 2 chip: Green; 3 chip: Blue
- 2. All dimensions are in millimeters.
- 3. Tolerance is \pm 0.1mm (.004") unless otherwise noted.

• Features

- * Three color, top view, wide view angle Chip LED.
- * Package in 8mm tape on 7" diameter reels.
- * Compatible with automatic Pick & Place equipment.
- * Compatible with Reflow soldering and Wave soldering processes.
- * EIA STD package.
- * I.C. compatible.
- * Pb free product.

DRAWING NO.: DS-80-19-0001G

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

• Chip Materials

Chip	Light Color	Dice Material	Lens Color
1	R: Red	AlInGap	
2	G: Green	InGaN	Water Clear
3	B: Blue	nGaN	

• Absolute Maximum Ratings (Ta= 25° C)

	SYMBOL PARAMETER		Rating		
STIVIDUL			G	В	UNIT
Pd	Power Dissipation	75	100	100	mW
VR	Reverse Voltage	5			V
IF	Continuous Forward Current		25	25	mA
IPF	Peak Forward Current	80	100	100	mA
ESD	Electrostatic Discharge Threshold (HBM) ^{Note A}		1000	1000	V
Topr	Operating Temperature Range	-40 ~ +85			°C
Tstg	Storage Temperature Range	-40 ~ +85			°C

Note A:

HBM: Human Body Model. Seller gives no other assurances regarding the ability of to withstand ESD

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

• Electro-Optical Characteristics (Ta= 25° C)

SYM	SYMBOL PARAMETER		TEST	MIN.	TYP.	MAX.	UNIT	
	R			1.7		2.3		
VF	G	Forward Voltage	IF = 20mA	2.7		3.4	V	
	В			2.7		3.4		
	R			140		280		
IV	G	Luminous Intensity	IF = 20mA	560		1120	mcd	
	В			140		280		
	R				623			
λD	G	Dominant Wavelength	IF = 20mA	515		525	nm	
	В			460		470		
	R				17			
Δλ	G	Spectral Line Half-Width	IF = 20mA		15		nm	
	В				25			
	R	Peak Emission Wavelength	IF = 20mA		630			
λр	G				520		nm	
	В				465			
20	1/2	Half Intensity Angle	IF = 20mA		130		deg	
	R	Reverse Current	VR = 5V			10		
IR	G					50	μA	
	В					50		

Notes:

- 1. Luminous intensity is measured with a light sensor and filter combination that proximities the CIE eye-response curve.
- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4. Caution in ESD :

Static Electricity and surge damages the LED. It is recommended use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

5. Major standard testing equipment by "Instrument System" Model : CAS140B Compact Array Spectrometer and "KEITHLEY" Source Meter Model : 2400.

DRAWING NO.: DS-80-19-0001G

DATE: 2020-3-04 PAGE

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

• Red Typical Electro-Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

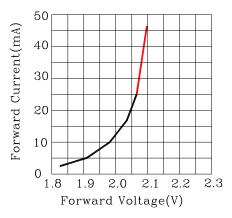


Fig.2 Forward Current vs.Forward Voltage

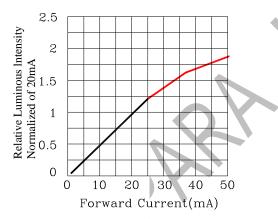
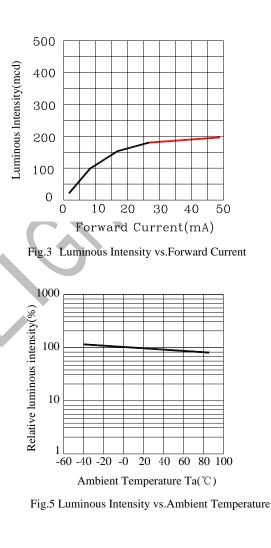
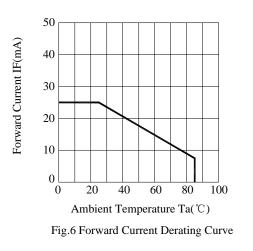
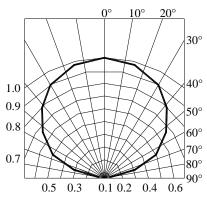
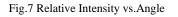






Fig.4 Relative Luminous Intensity vs.Forward Current

DRAWING NO.: DS-80-19-0001G

DATE: 2020-3-04 PAGE

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

• Green Typical Electro-Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

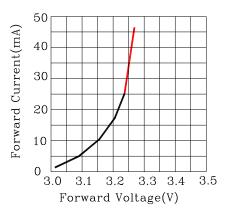


Fig.2 Forward Current vs.Forward Voltage

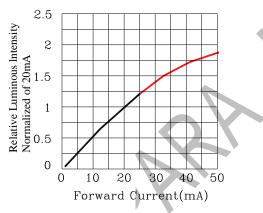
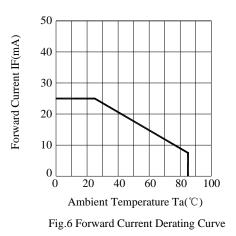



Fig.4 Relative Luminous Intensity vs.Forward Current

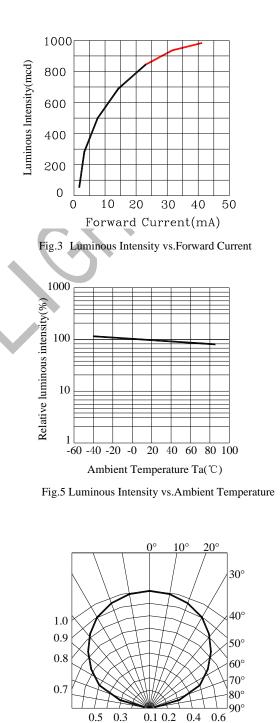


Fig.7 Relative Intensity vs.Angle

DRAWING NO.: DS-80-19-0001G

DATE: 2020-3-04 PAGE

Part No.:L-S11F1RGBCT-CA-XM

REV:A / 2

Blue Typical Electro-Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

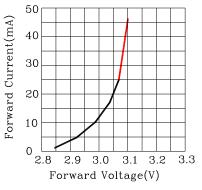


Fig.2 Forward Current vs.Forward Voltage

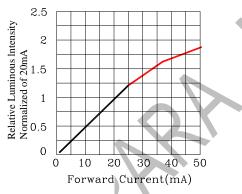
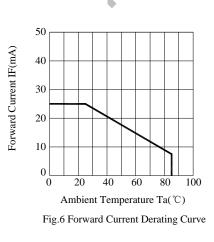
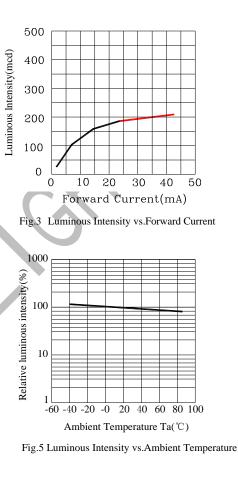




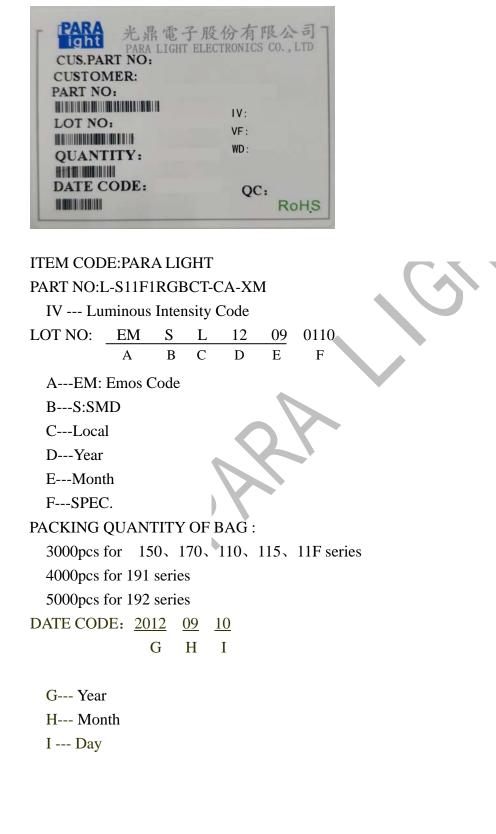
Fig.4 Relative Luminous Intensity vs.Forward Current

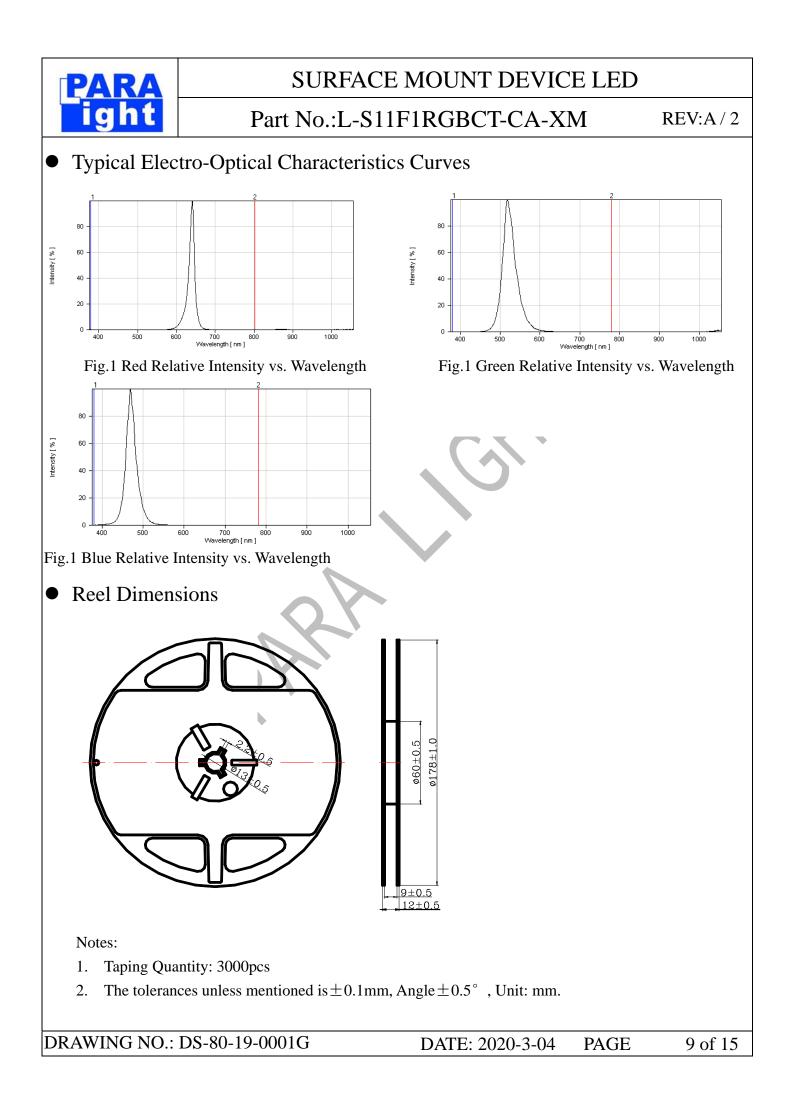
30° 40° 1.0 0.9 50 0.8 60 709 0.7 80° 90 0.3 0.4 0.5 0.1 0.2 0.6

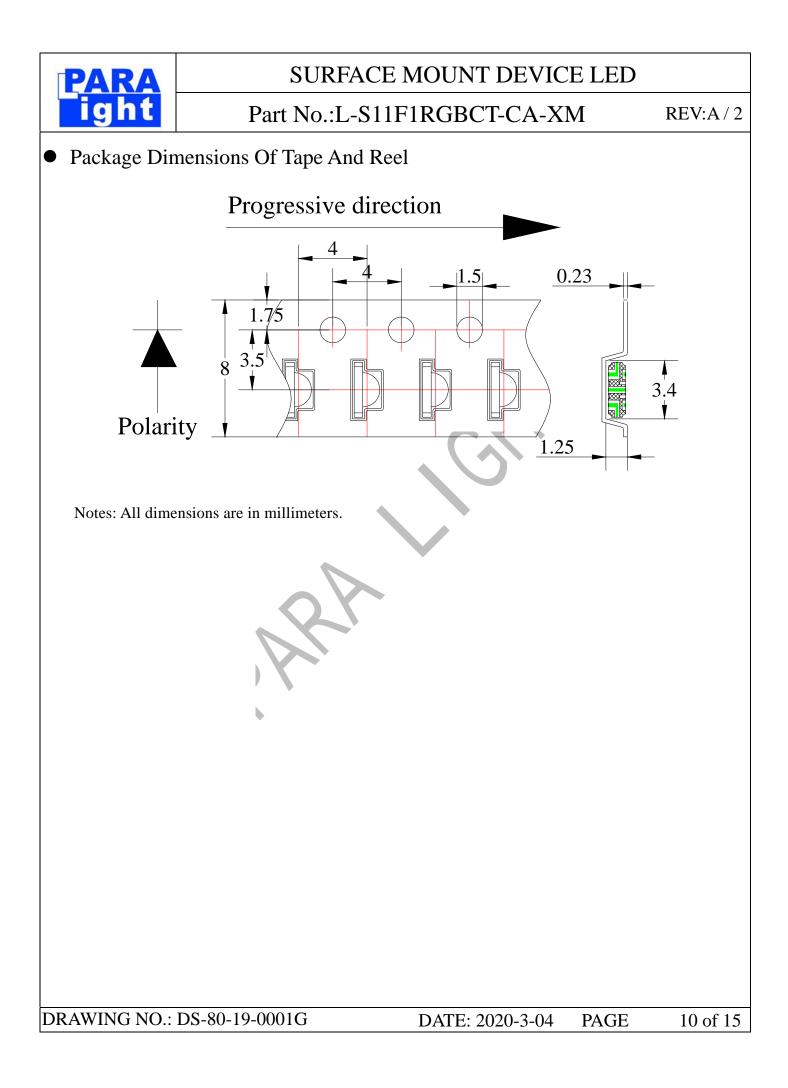
Fig.7 Relative Intensity vs.Angle

DRAWING NO.: DS-80-19-0001G

DATE: 2020-3-04 PAGE

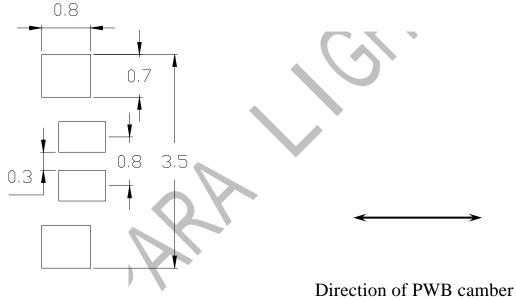

7 of 15




Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

• Label Explanation


Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

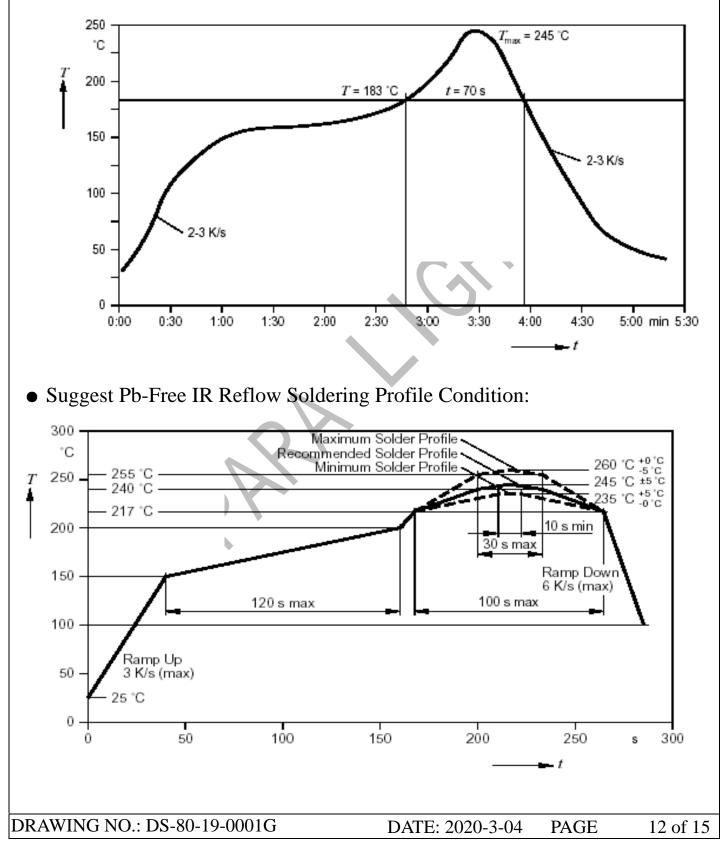
Cleaning

- * If cleaning is required, use the following solutions for less than 1 minute and less than 40° C.
- * Appropriate chemicals: Ethyl alcohol and isopropyl alcohol.
- Effect of ultrasonic cleaning on the LED resin body differs depending on such factors as the oscillator output, size of PCB and LED mounting method. The use of ultrasonic cleaning should be enforced at proper output after confirming there is no problem.

• Suggest Soldering Pad Dimensions

and go to reflow furnace

DRAWING NO.: DS-80-19-0001G


DATE: 2020-3-04 PAGE 11 of 15

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

• Suggest Sn/Pb IR Reflow Soldering Profile Condition:

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

• Bin Code List

Luminous Intensity (IV), Unit: mcd@20mA								
Red (a chip)		Green (b chip)		Blue (c chip)				
Bin Code	Min	Max	Bin Code	Min	Max	Bin Code Min Max		
R1	140	180	G1	560	710	B1	140	180
R2	180	224	G2	710	900	B2	180	224
R3	224	280	G3	900	1120	B3	224	280

Tolerance of each bin are $\pm 15\%$

Dominant Wavelength (Hue), Unit: nm@20mA						
Green (b chip)			Blue (c chip)			
Bin Code	Min	Max	Bin Code	Min	Max	
U	515	520	Х	460	465	
V	520	525	Y	465	470	

Tolerance of each bin are ± 1 nm

DRAWING NO.: DS-80-19-0001G

DATE: 2020-3-04 PAGE 13 of 15

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

CAUTIONS

1. Application Limitation:

The LED's described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household application). Consult PARA's sales in advance for information on application in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LED's may directly jeopardize life or health (such as airplanes, automobiles, traffic control equipment, life support system and safety devices).

2.Storage:

Do not open moisture proof bag before the products are ready to use.

Before opening the package: The LEDs should be kept at 30° C or less and 90% RH or less.

After opening the package: The LED's floor life is 1 year under 30° C or less and 60% RH or less. If unused LEDs remain, it should be stored in moisture proof packages.

If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

Baking treatment: 60±5°C for 24 hours

DRAWING NO.: DS-80-19-0001G

Part No.:L-S11F1RGBCT-CA-XM

REV:A/2

15 of 15

3.Soldering

Do not apply any stress to the lead frame during soldering while the LED is at high temperature. Recommended soldering condition. **Reflow Soldering:** Pre-heat 120~150°C, 120sec. MAX., Peak temperature : 240°C Max. Soldering time: 10 sec Max. Soldering Iron: (Not recommended) Temperature 300°C Max., Soldering time : 3 sec. Max.(one time only), power dissipation of iron : 20W Max. use SN60 solder of solder with silver content and don't to touch LED lens when soldering. Wave soldering: Pre-heat 100°C Max, Pre-heat time 60 sec. Max, Solder wave 260°C Max, Soldering time 5 sec. Max. preformed consecutively cooling process is required between 1st and 2nd soldering processes. 4. Lead-Free Soldering For Reflow Soldering: 1 \ Pre-Heat Temp:150-180°C,120sec.Max. 2 Soldering Temp: Temperature Of Soldering Pot Over 230°C, 40sec.Max. 3 Seak Temperature:260°C Sec. 3 Sec. 4 • Reflow Repetition:2 Times Max. 5 · Suggest Solder Paste Formula 93.3 Sn/3.1 Ag/3.1 Bi /0.5 Cu For Soldering Iron (Not Recommended): 1 \ Iron Tip Temp:350℃ Max. 2 Soldering Iron:30w Max. 3 Soldering Time: 3 Sec. Max. One Time. For Dip Soldering: 1 • Pre-Heat Temp:150°C Max. 120 Sec. Max. 2 Shath Temp:265°C Max. 3 • Dip Time:5 Sec. Max. 5. Drive Method Circuit model A Circuit model B (A)Recommended circuit. (B)The difference of brightness between LED's could be found due to the Vf-If characteristics of LED. DRAWING NO.: DS-80-19-0001G DATE: 2020-3-04 PAGE