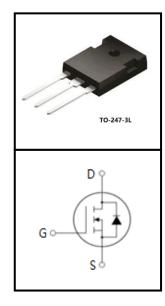


900V N-Channel Silicon Carbide Power MOSFET

RoHS

FEATURES


- Low On-Resistance
- Low Capacitance
- Avalanche Ruggedness
- Halogen Free, RoHS Compliant

BENEFITS

- Higher System Efficiency
- Parallel Device Convenience
- High Temperature Application
- High Frequency Operation

APPLICATIONS

- Switch Mode Power Supply (SMPS)
- Power Factor Correction (PFC)
- Uninterruptible Power Supply (UPS)
- EV Charging station & Motor Drives
- Solar/ Wind Renewable Energy
- Power Inverters & DC/DC Converters

Device Marking and Package Information					
Device	Package	Marking			
C2M090W035	TO-247-3L	C2M090W035			

Halogen free

Absolute Maximum Ratings $T_c = 25^{\circ}C$, unless otherwise noted							
Parameter	Symbol Test Conditions		Value	Unit			
Drain-Source Voltage	V _{DSS}	VGS=0V, IDS=100µA	900	V			
Continuous Drain Current	I _D	VGS=20V, Tc=25°C	80	,			
Pulsed Drain Current	I _{DM}	tew limitation per Fig.17	320				
Power Dissipation	P _D	Tc=25°C	338	W			
Recommend Gate Source Voltage	VGS, op	Static	-5/+20	v			
Maximum Gate Source Voltage	Vgs, max	AC (f > 1Hz)	-10/+25	V			
Soldering Temperature	T∟		260				
Operating Junction and Storage Temperature Range	T _J , T _{stg}		-55/+150	°C			

Thermal Resistance						
Parameter Symbol Value Unit						
Thermal Resistance, Junction-to-Case	R _{thJC}	0.37	K/W			

C2M090W035

-		T O	Value				
Parameter	Symbol	Test Conditions	Min.	Typ. Max.		Unit	
Static							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_{D} = 100 \mu A$	900			V	
		$V_{DS} = 900V, V_{GS} = 0V, T_{J} = 25^{\circ}C$		<1	100		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 900V, V _{GS} = 0V, T _J = 150°C		10	500	μA	
Gate-Source Leakage	I _{GSS}	$V_{GS} = 20V, V_{DS} = 0V$			200	nA	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = 10V, I_{D} = 20mA$	2		3.5	V	
Drain-Source On-Resistance	R _{DS(on)}	$V_{GS} = 20V, I_{D} = 40A$		35	42	mΩ	
Dynamic							
Input Capacitance	C _{iss}	V _{GS} = 0V		2316		pF	
Output Capacitance	C _{oss}	V _{DS} = 600V f = 1.0MHz		180			
Reverse Transfer Capacitance	C _{rss}	Vac=25mV		26			
Effective Output Capacitance, Energy Related	Co(er)	VGS=0V V _{DS} =0 to 600V		187			
Effective Output Capacitance, Time Related	Co(tr)	I _D =const., VGs=0V V _{DS} =0 to 600V		253			
Total Gate Charge	Qg			170			
Gate-Source Charge	Q _{gs}	V _{DS} =400V, VGS=0/+15V,		29		nC	
Gate-Drain Charge	Q _{gd}	I _D =40A		80			
Gate plateau voltage	Vpl			10.3		V	
Turn-on Delay Time	t _{d(on)}			45			
Turn-on Rise Time	t _r	V _{DS} =400V V _{GS} =0/15V		103			
Turn-off Delay Time	t _{d(off)}	$I_D = 40A$ RG(ext)= 2.5 Ω		66		ns	
Turn-off Fall Time	t _f	····, -···		18			
Coss Stored Energy	Eoss	V _{GS} =0V, V _{DS} =900V f =1MHz, VAC=25mV		119			
Turn-on Switching Energy	Eon	V _{DS} =900V,		194*		μJ	
Turn-off Switching Energy	Eoff	V _{GS} =0/15V, I _D =40A, RG(ext)= 2.5Ω		326*			
Internal Gate Resistance	RG(int.)	f =1MHz, VAC=25mV		3		Ω	

*Base on the results of calculation, note that the energy loss caused by the reverse recovery of FWD is not included in E on .

C2M090W035

Built-in SiC Diode Characteristics								
Continuous Diode Forward Current	۱ _s	$V_{GS} = 0V$		80		А		
Inverse Diode Forward Voltage	V _{SD}	I _{SD} = 24A, V _{GS} = -5V			6	V		
Reverse Recovery Time	t _{rr}			27		ns		
Reverse Recovery Charge	Q _{rr}	I _F = 20A, V _{DS} =180V, di _F /dt =500A /μs		73		nC		
Peak Reverse Recovery Current	IRM			4.5		А		

Typical Device Performance

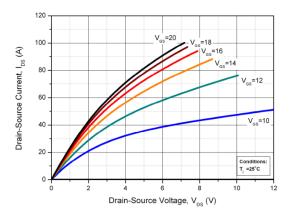


Fig. 1 Forward Output Characteristics at $T_j = 25^{\circ}C$

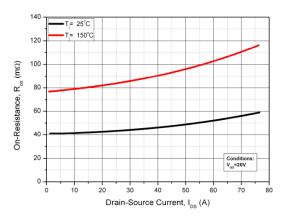
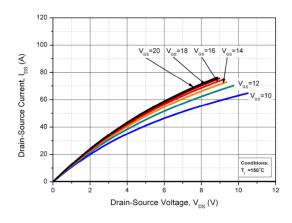



Fig. 3 On-Resistance vs. Drain Current for Various T_j

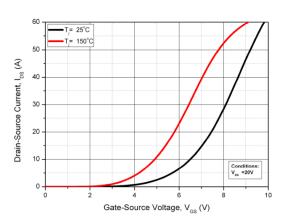


Fig. 4 Transfer Characteristics for Various T_j

Typical Device Performance

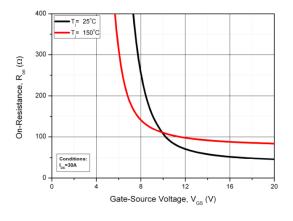


Fig. 5 On-Resistance vs. Gate Voltage for Various T_j

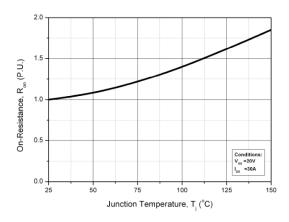
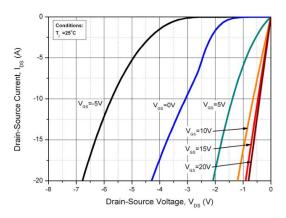



Fig. 7 Normalized On-Resistance vs. Temperature

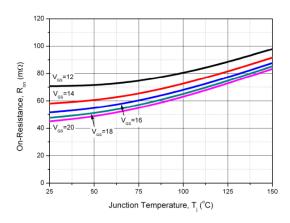
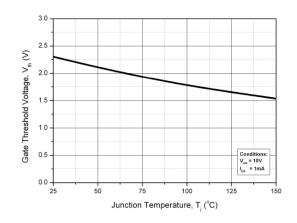
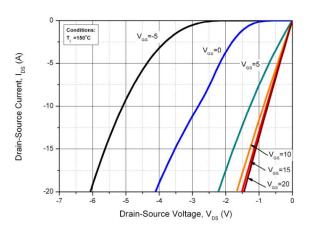
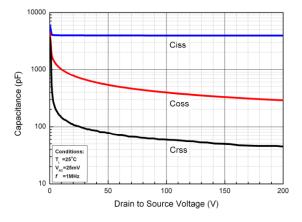
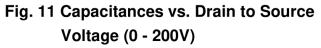


Fig. 6 On-Resistance vs. Temperature for Various Gate Voltage


Fig. 8 Threshold Voltage vs. Temperature



Typical Device Performance

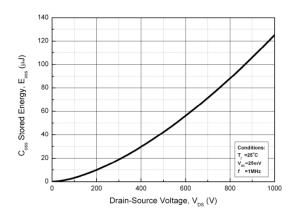


Fig. 13 Output Capacitor Stored Energy

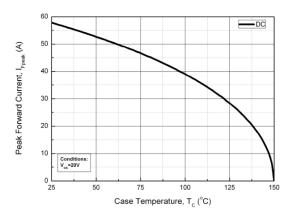


Fig. 15 Drain Current Derating vs. Case Temperature

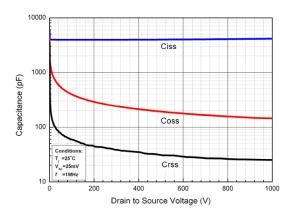


Fig. 12 Capacitances vs. Drain to Source Voltage (0 - 1000V)

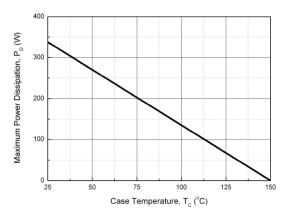
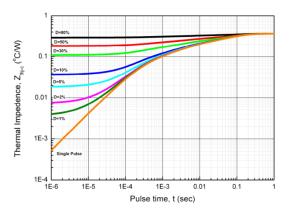



Fig. 14 Maximum Power Dissipation Derating vs. Case Temperature

Typical Device Performance

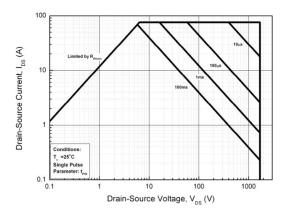


Fig. 17 Safe Operating Area

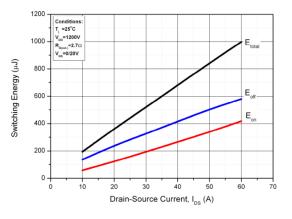


Fig. 19 Clamped Inductive Switching Energy vs. Drain Current (V_{DD}=1200V)*

Fig. 21 Clamped Inductive Switching Energy vs. External Gate Resistor (R_{G(ext.)})*

*Base on the results of calculation, note that the energy loss caused by the reverse recovery of FWD is not included in E on .

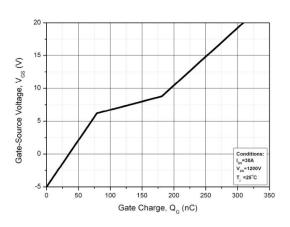


Fig. 18 Gate Charge Characteristics

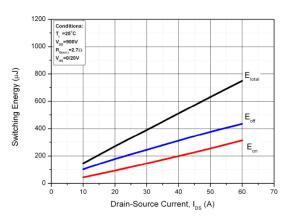
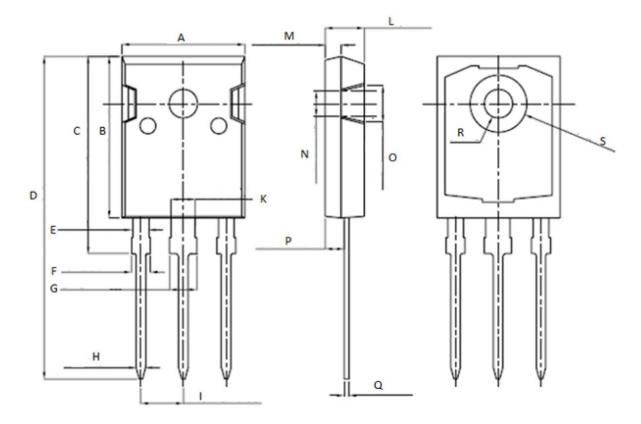



Fig. 20 Clamped Inductive Switching Energy vs. Drain Current (V_{DD}=900V)*

TO-247

Unit: mm			Unit: mm			
Symbol	Min.	Max.	Symbol	Min.	Max.	
Α	15.95	16. 25	K	2.90	3.10	
В	20.85	21.25	L	4.90	5.30	
C	20.95	21.35	М	1.90	2.10	
D	40.5	40.9	Ν	4. 50	4.70	
E	1.9	2.1	0	5.40	5.60	
F	2.1	2. 25	Р	2. 29	2.49	
G	3.1	3. 25	Q	0. 51	0. 71	
Н	1.1	1.3	R	φ3.5	φ3.7	
I	5.40	5.50	S	φ7.1	φ7.3	

*The information provided herein is subject to change without notice.

Disclaimer

All product specifications and data are subject to change without notice.

For documents and material available from this datasheet, Suzhou Convert does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or by any conduct of Suzhou Convert.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless. Customers using or selling Suzhou Convert products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Suzhou Convert for any damages arising or resulting from such use or sale.

Suzhou Convert disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Suzhou Convert's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

Suzhou Convert SemiConductor CO., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all Suzhou Convert products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Suzhou Convert believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.