

SUPER-SEMI



## SUPER-MOSFET

100V Power MOSFET SSP1991

Rev. 1.0 Jun. 2019

www.supersemi.com.cn

# SSP1991 100V Single N-Channel Trench MOSFET

## Description

The SSP1991 MOSFET uses advanced trench MOSFET technology, that is uniquely optimized to provide the most efficient high frequency switching performance and low on-state resistance. This device is ideal for DC/DC converters and general purpose applications.

#### Features

| VDS                   |  |
|-----------------------|--|
| D (at Vgs=10V)        |  |
| RDS(on) (at Vgs=10V)  |  |
| 100% avalanche tested |  |

SSP1991



#### Absolute Maximum Ratings

| Symbol                            | Parameter                                                         | SSP1991     | Unit |
|-----------------------------------|-------------------------------------------------------------------|-------------|------|
| V <sub>DS</sub>                   | Drain-Source Voltage                                              | 100         | V    |
| I <sub>D</sub>                    | Drain Current -Continuous (Tc = 25°C)<br>-Continuous (Tc = 100°C) | 120*<br>76* | А    |
| I <sub>DM</sub>                   | Drain Current - Pulsed<br>(Note 1)                                | 480*        | А    |
| V <sub>GS</sub>                   | Gate-Source voltage                                               | ±20V        | V    |
| I <sub>AS</sub>                   | Avalanche Current<br>(Note 2)                                     | 28          | А    |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy<br>(Note 2)                         | 609         | mJ   |
| PD                                | Power Dissipation - Tc = 25°C<br>- Tc = 100°C                     | 223<br>89   | W    |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                           | -55 to +150 | °C   |

\* Drain current limited by maximum junction temperature.

#### **Thermal Characteristics**

| Symbol           | Parameter                              | SSP1991 | Unit |
|------------------|----------------------------------------|---------|------|
| R <sub>0JA</sub> | Thermal Resistance Junction-to-Ambient | 62      | °C/W |
| R <sub>ejc</sub> | Thermal Resistance Junction-to-Case    | 0.56    | °C/W |

100V

120A <4.5mΩ



## Electrical Characteristics TJ = 25°C unless otherwise noted

| Symbol              | Parameter                             | Conditions                       | Min | Тур  | Мах  | Unit |
|---------------------|---------------------------------------|----------------------------------|-----|------|------|------|
| Off Characteristics |                                       |                                  |     |      |      |      |
| BVDSS               | Drain-Source Breakdown Voltage        | VGS = 0V, ID = 250µA, TJ = 25℃   | 100 | -    | -    | V    |
| IDSS                | Zero Gate Voltage Drain Current       | Vds = 80V, Vgs = 0V              | -   | -    | 1    | μA   |
| IGSSF               | Gate-Body Leakage Current,<br>Forward | Vgs = 20V, Vds = 0V              | -   | -    | 100  | nA   |
| Igssr               | Gate-Body Leakage Current,<br>Reverse | Vgs = -20V, Vds = 0V             | -   | -    | -100 | nA   |
| On Characteristics  |                                       |                                  |     |      |      |      |
| VGS(th)             | Gate Threshold Voltage                | Vds = Vgs, Id = 250µA            | 2.0 | 3.0  | 4.0  | V    |
| RDS(on)             | Static Drain-Source On-<br>Resistance | Vgs = 10V, ID = 50A              | -   | 3.8  | 4.5  | mΩ   |
| gfs                 | Forward Transconductance              | VDS = 10V, ID = 50A              | -   | 120  | -    | S    |
| Rg                  | Gate resistance                       | VGS=0V, VDS=0V, f=1MHz           | -   | 2.5  | -    | Ω    |
| Dynamic Character   | ristics                               |                                  |     |      |      |      |
| Ciss                | Input Capacitance                     | VDS = 40V, VGS = 0V,             | -   | 6750 | -    | pF   |
| Coss                | Output Capacitance                    | f=1MHz                           | -   | 1300 | -    | pF   |
| Crss                | Reverse Transfer Capacitance          |                                  | -   | 50   | -    | pF   |
| Switching Characte  | eristics                              |                                  |     |      |      |      |
| td(on)              | Turn-On Delay Time                    | $VDS = 50V, RG = 3\Omega, VGS =$ | -   | 30.4 | -    | ns   |
| tr                  | Turn-On Rise Time                     | 10V, ID = 50A (Note 3, 4)        | -   | 28.8 | -    | ns   |
| td(off)             | Turn-Off Delay Time                   |                                  | -   | 93   | -    | ns   |
| tf                  | Turn-Off Fall Time                    |                                  | -   | 34.2 | -    | ns   |
| Qg                  | Total Gate Charge                     | VDS = 50V, ID = 50A, VGS =       | -   | 100  | -    | nC   |
| Qgs                 | Gate-Source Charge                    | 10V (Note 3, 4)                  | -   | 27   | -    | nC   |
| Qgd                 | Gate-Drain Charge                     |                                  | -   | 26   | -    | nC   |
| Drain-Source Diode  | e Characteristics and Maximum R       | atings                           |     |      |      |      |
| VSD                 | Drain-Source Diode Forward<br>Voltage | VGS = 0V, IS = 50A               | -   | 0.9  | 1.2  | V    |
| trr                 | Reverse Recovery Time                 | Vgs = 0V,                        | -   | 73   | -    | ns   |
| Qrr                 | Reverse Recovery Charge               | Is = 50A, dIF/dt =100A/µs        | -   | 150  | -    | μC   |

#### NOTES:

1. Repetitive Rating: Pulse width limited by maximum junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ=25°C.

2. VGS=10V, RG=25 Ω, L=1.0mH, Starting TJ=25°C.

3. Pulse Test: Pulse width ≤ 300us, Duty Cycle ≤ 2% 4. Essentially Independent of Operating Temperature Typical Characteristics



## **Typical Performance Characteristics**



Figure 1: On-region characteristics

Figure 2: Typ. drain-source on-state resistance





Figure 4: On-resistance vs. VGS voltage



## **Typical Performance Characteristics**



Figure 5: Typ. transfer characteristics

Figure 6: Forward characteristics of reverse diode





Figure 8: Capacitance characteristics

1.5



## **Typical Performance Characteristics**



Figure 9: Maximum safe operating area



Figure 10: Continuous drain current vs. case temperature



Figure 11: Transient thermal impedance



## Gate Charge Test Circuit and Waveform



## Inductive Switching Test Circuit and Waveforms





SSP1991 100V Single N-Channel Trench MOSFET







Package Outline



|   | + | 10-101 | ١ |
|---|---|--------|---|
|   |   |        |   |
| E | 2 |        |   |



COMMON DIMENIONS

| SAMPLIN    | MM      |          |       |  |
|------------|---------|----------|-------|--|
| STMBUL     | MIN NDM |          | MAX   |  |
| A          | 4.40    | 4.57     | 4.70  |  |
| A1         | 1.27    | 1.30     | 1.37  |  |
| A2         | 2.35    | 2.40     | 2.50  |  |
| b          | 0.77    | 0.80     | 0.90  |  |
| b2         | 1.17    | 1.27     | 1.36  |  |
| c          | 0.48    | 0.50     | 0.56  |  |
| D          | 15.40   | 15.60    | 15.80 |  |
| D1         | 9.00    | 9.10     | 9.20  |  |
| DEP        | 0.05    | 0.10     | 0.20  |  |
| Ε          | 9.80    | 10.00    | 10.20 |  |
| E1         | -       | 8.70     | -     |  |
| E2         | 9.80    | 10.00    | 10.20 |  |
| ØP1        | 1.40    | 1.50     | 1.60  |  |
| e          | 2.54BSC |          |       |  |
| e1         | 5.08BSC |          |       |  |
| H1         | 6.40    | 6.50     | 6.60  |  |
| L          | 12.75   | 13.50    | 13.65 |  |
| L1         | -       | 3.10     | 3.30  |  |
| 12         |         | 2.50REF  |       |  |
| ØP         | 3.50    | 3.60     | 3.63  |  |
| Q          | 2.73    | 2.80 2.8 |       |  |
| θ1         | 5       | 7        | 9.    |  |
| θ2         | ľ       | 3        | 5     |  |
| <b>0</b> 3 | 1'      | 3        | 5'    |  |



### DISCLAIMER

SUPER SEMICONDUCTOR reserves the right to make changes WITHOUT further notice to any products herein to improve reliability, function, or design.

For documents and material available from this datasheet, SUPER SEMICONDUCTOR does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, SUPER SEMICONDUCTOR hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

The products shown herein are not designed for use as critical components in medical, life-saving, or life-sustaining applications, whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Customers using or selling SUPER SEMICONDUCTOR products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify SUPER SEMICONDUCTOR for any damages arising or resulting from such use or sale.

#### **INFORMATION**

For further information on technology, delivery terms and conditions and prices, please contact SUPER SEMICONDUCTOR office or website (**www.supersemi.com.cn**).