

SUPER-SEMI

SUPER-MOSFET

Super Gate Metal Oxide Semiconductor Field Effect Transistor

30V Complementary Power Transistor SGO4606T

Rev. 1.0 Aug. 2016

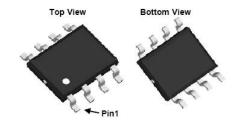
www.supersemi.com.cn

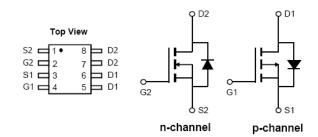
Jun, 2015

SG-FET

SGO4606T 30V Complementary MOSFET

Description


The SG-MOSFET uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.


Features

Ŋ	I-Channel	P-Channel
• VDS	30V	-30V
ID (at Vgs=10V)	6A	-6.5A
• RDS(on) (at Vgs=10V)	<29.0mΩ	<28.0mΩ
(at Vgs=4.5V) <40.0mΩ	<42.0mΩ

• Excellent Avalanche Performance

SGO4606T

Absolute Maximum Ratings

Symbol	Parameter	SGO4606T-N ch	SGO4606T-P ch	Unit
V _{DS}	Drain-Source Voltage	30	-30	V
I _D	Drain Current -Continuous (TA = 25°C) -Continuous (TA = 70°C)	6* 5*	-6.5* -5.3*	А
I _{DM}	Drain Current - Pulsed (Note 1)	30*	-30*	А
V_{GS}	Gate-Source voltage	±20	±20	V
I _{AS}	Single Pulse Avalanche Current (Note 1)	18	34	А
E _{AS}	Single Pulse Avalanche Energy L=0.1mH (Note 1)	16	58	mJ
P _D	Power Dissipation - TA = 25°C (Note 2) - TA = 70°C	2.0 1.3	2.0 1.3	W
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	-55 to +150	℃

^{*} Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	SGO4606T	Unit
	Maximum Junction-to-Ambient, t<10s(Note 3)	48(typ.)	°C/W
	Maximum Junction-to-Ambient, Steady- State(Note 3,4)	74(typ.)	°C/W
R _{0JL}	Maximum Junction-to-Lead, Steady-State	32(typ.)	°C/W

Electrical Characteristics TJ = 25 ℃ unless otherwise noted

N-Channel Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characteri	stics					
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250µA, TJ = 25°C	30	-	-	V
IDSS	Zero Gate Voltage Drain Current	VDS = 30V, VGS = 0V -TJ = 55°C	-	-	1 5	μA μA
IGSSF	Gate-Body Leakage Current, Forward	VGS = 20V, VDS = 0V	-	-	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	VGS = -20V, VDS = 0V	-	-	-100	nA
On Characteri	stics					•
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = 250µA	1.0	1.8	3.0	V
RDS(on)	Static Drain-Source On- VGS = 10V In = 6A		-	24 34	29 40	mΩ
gFS	Forward Transconductance	VDS = 5V, ID = 6A	-	15	-	S
Rg	Gate resistance VGS=0V, VDS=0V, f=1MHz		-	3.2	-	Ω
Dynamic Char	racteristics					
Ciss	Input Capacitance	VDS = 15V, VGS = 0V,	-	250	-	pF
Coss	Output Capacitance	f=1MHz	-	45	-	рF
Crss	Reverse Transfer Capacitance		-	35	-	pF
Switching Cha	aracteristics					
td(on)	Turn-On Delay Time	$VDS = 15V$, $RG = 3\Omega$,	-	4.5	-	ns
tr	Turn-On Rise Time	ID = 6A , VGS = 10V (Note 5, 6)	-	2.5	-	ns
td(off)	Turn-Off Delay Time		-	14.5	-	ns
tf	Turn-Off Fall Time		-	3.5	-	ns
Qg(10V)	Total Gate Charge	VDS = 15V, ID = 6A,	-	5.2	-	nC
Qg(4.5V)	Total Gate Charge	VGS = 0~10V (Note 5, 6)	-	2.6	-	nC
Qgs	Gate-Source Charge		-	0.8	-	nC
Qgd	Gate-Drain Charge		-	1.3	-	nC
Drain-Source	Diode Characteristics and Maximum F	Ratings				
Is	Maximum Continuous Drain-Source	Maximum Continuous Drain-Source Diode Forward Current		-	3	Α
Ism		Maximum Pulsed Drain-Source Diode Forward Current		-	12	Α
VsD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 1A	-	0.7	1.0	V
trr	Reverse Recovery Time	VGS = 0V, IS =6A dIF/dt	-	8.5	-	ns
Qrr	Reverse Recovery Charge	=100A/µs (Note 5)	-	2.2	-	nC
						•

NOTES

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature TJ(MAX)=150 °C. Ratings are based on low frequency and duty cycles to keep initial TJ=25 °C.
- 2. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.
- 3. The value of R_{QJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value in any given application depends on the user's specific board design.
- 4. The R_{BJA} is the sum of the thermal impedance from junction to lead R_{BJL} and lead to ambient.
- 5. Pulse Test: Pulse width ≤ 300us, Duty Cycle ≤ 2%
- 6. Essentially Independent of Operating Temperature Typical Characteristics

N-Channel Typical Performance Characteristics

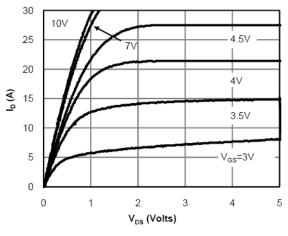


Figure 1: On-Region Characteristics

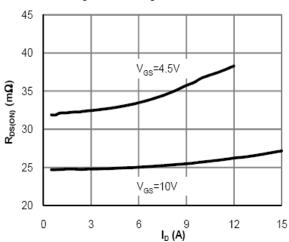
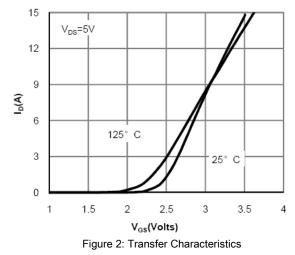



Figure 3: On-Resistance vs Drain current and Gate voltage

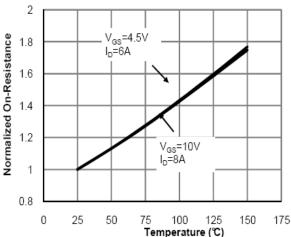


Figure 4: On-Resistance vs Junction Temperature

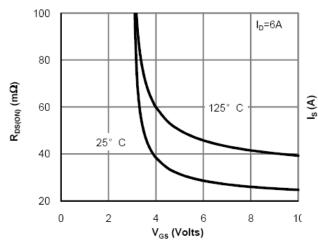


Figure 5: On-Resistance vs Gate-Source voltage

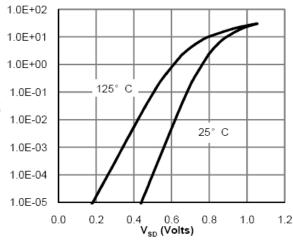
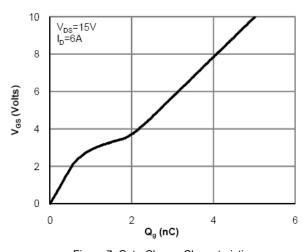



Figure 6: Body-Diode Characteristics

N-Channel Typical Performance Characteristics

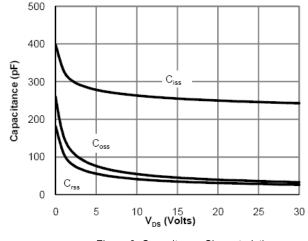


Figure 8: Capacitance Characteristics

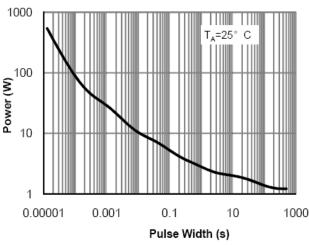


Figure 9: Single Pulse Power Rating Junction-to-Ambient

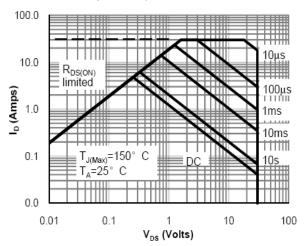
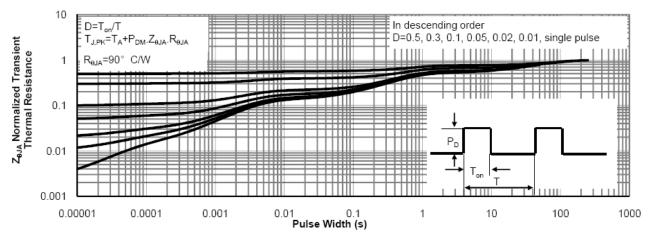
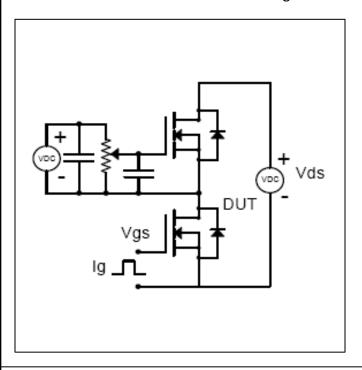
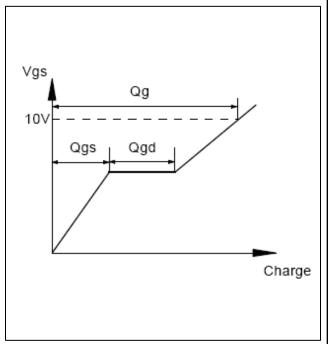
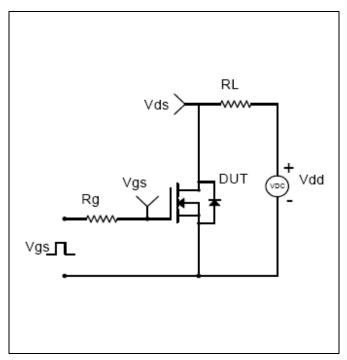
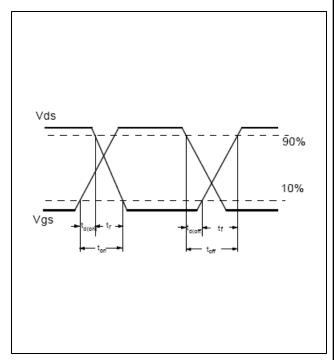


Figure 10: Maximum Forward Biased Safe Operating Area

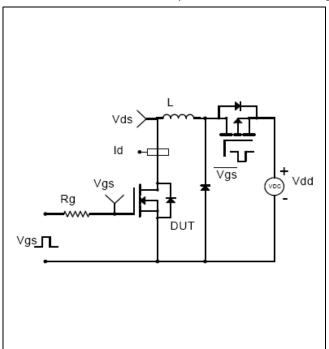



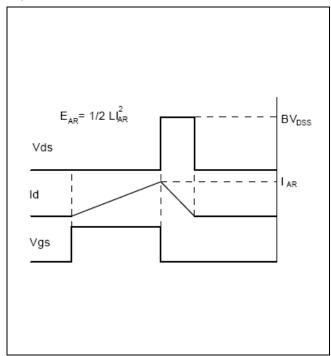

Figure 11: Maximum Transient Thermal Impedance

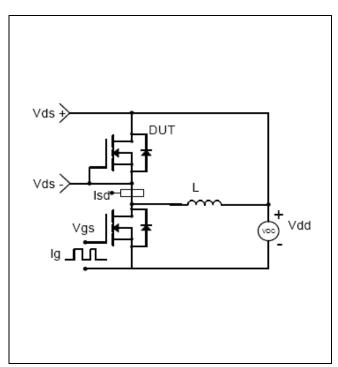

Test circuits for N-Channel

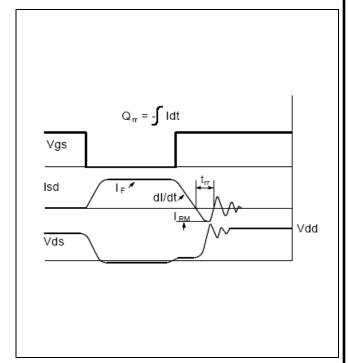

Gate Charge Test Circuit and Waveform

Resistive Switching Test Circuit and Waveforms






Test circuits for N-Channel


Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Electrical Characteristics TJ = 25 ℃ unless otherwise noted

P-Channel Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characteri	istics					
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250µA, TJ = 25°C	-30	-	-	V
IDSS	Zero Gate Voltage Drain Current	VDS = -30V, VGS = 0V	_	-	-1	μA
		-TJ = 55°C		-	-5	μA
IGSSF	Gate-Body Leakage Current, Forward	VGS = 20V, VDS = 0V	-	-	100	nA
IGSSR	Gate-Body Leakage Current, Reverse VGS = -20V, VDS = 0V		-	-	-100	nA
On Characteri	stics					
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = -250µA	-1.0	-1.8	-3.0	V
Dec.	Static Drain-Source On-	Vgs = -10V, ID = -6.5A	_	23	28	0
RDS(on)	Resistance	VGS = -4.5V, $ID = -5A$		35	42	mΩ
gFS	Forward Transconductance	VDS = -5V, ID = -6.5A	-	18	-	S
Rg	Gate resistance	Gate resistance VGS=0V, VDS=0V, f=1MHz		3.2	-	Ω
Dynamic Char	racteristics					
Ciss	Input Capacitance	VDS = -15V, VGS = 0V,	-	760	-	pF
Coss	Output Capacitance	f=1MHz	-	140	-	pF
Crss	Reverse Transfer Capacitance		-	95	-	pF
Switching Cha	aracteristics					
td(on)	Turn-On Delay Time	$VDS = -15V$, $RG = 3\Omega$,	-	8	-	ns
tr	Turn-On Rise Time	ID = -6.5A , VGS = -10V (Note 5, 6)	-	6	-	ns
td(off)	Turn-Off Delay Time		-	17	-	ns
tf	Turn-Off Fall Time		-	5	-	ns
Qg(10V)	Total Gate Charge	VDS = -15V, ID = -6.5A,	-	13.6	-	nC
Qg(4.5V)	Total Gate Charge	VGS = 0~-10V (Note 5, 6)	-	6.7	-	nC
Qgs	Gate-Source Charge		-	2.5	-	nC
Qgd	Gate-Drain Charge		-	3.2	-	nC
Drain-Source	Diode Characteristics and Maximum R	Ratings				
Is	Maximum Continuous Drain-Source	Maximum Continuous Drain-Source Diode Forward Current		-	-3	Α
Ism	Maximum Pulsed Drain-Source Di	Maximum Pulsed Drain-Source Diode Forward Current		-	-12	Α
VsD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = -1A	-	-0.7	-1.0	V
trr	Reverse Recovery Time	VGS = 0V, IS =-6.5A dIF/dt	-	15	-	ns
Qrr	Reverse Recovery Charge	=100A/µs (Note 5)	-	9.7	-	nC

NOTES

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ=25°C.
- 2. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.

- 4. The R_{BJA} is the sum of the thermal impedance from junction to lead R_{BJL} and lead to ambient.
- Fulse Test: Pulse width ≤ 300us, Duty Cycle ≤ 2%
- 6. Essentially Independent of Operating Temperature Typical Characteristics

^{3.} The value of R_{SJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value in any given application depends on the user's specific board design.

P-Channel Typical Performance Characteristics

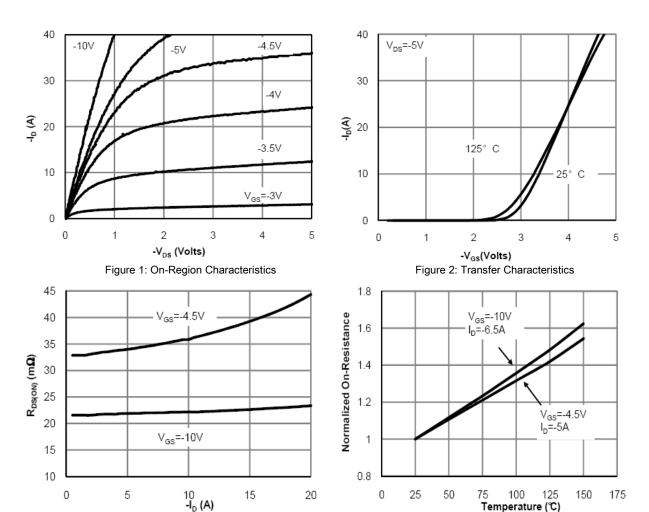


Figure 3: On-Resistance vs Drain current and Gate voltage

I_D=-6.5A

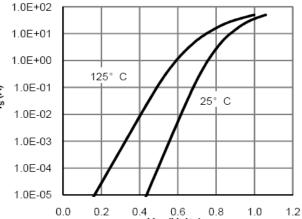


Figure 4: On-Resistance vs Junction Temperature

-I_s(A) 125° C 25° C 4 0.6 -V_{SD} (Volts) 6 4 8 10 -V_{GS} (Volts) Figure 5: On-Resistance vs Gate-Source voltage Figure 6: Body-Diode Characteristics

90

70

50

30

10

2

 $R_{DS(ON)}$ (m Ω)

P-Channel Typical Performance Characteristics

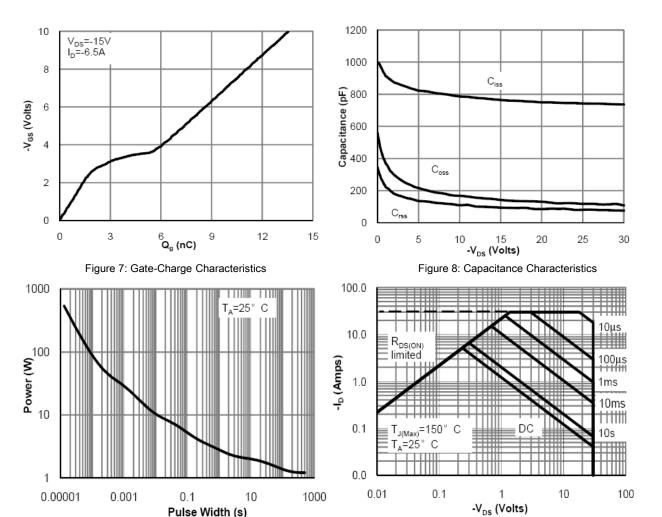
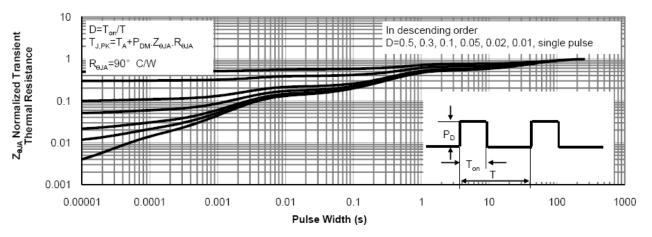
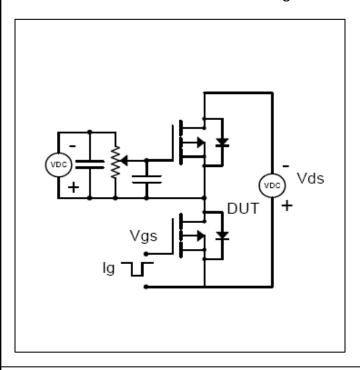
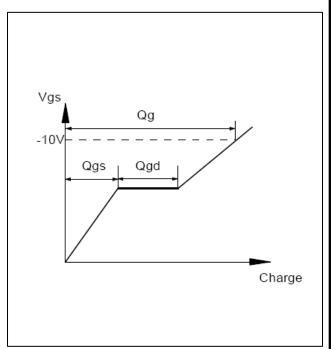
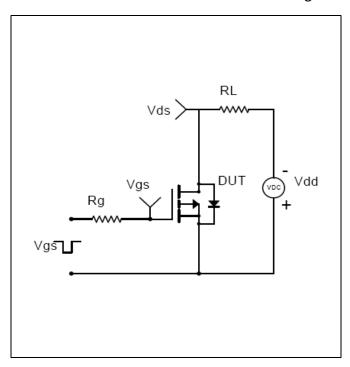
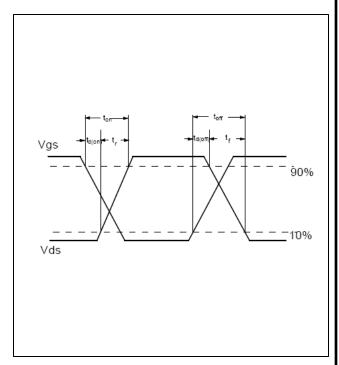


Figure 9: Single Pulse Power Rating Junction-to-Ambient

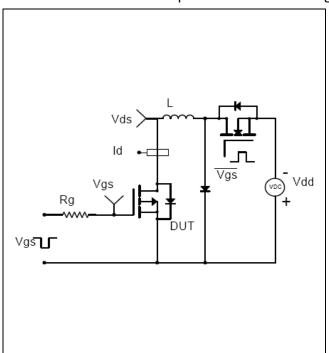



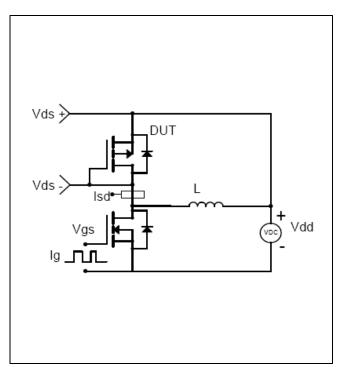

Figure 11: Maximum Transient Thermal Impedance

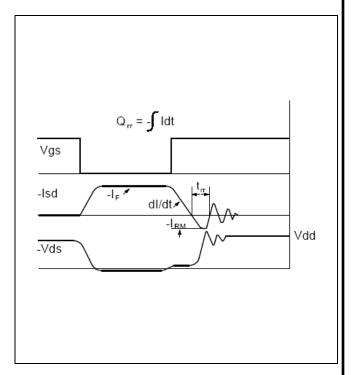

Test circuits for P-Channel


Gate Charge Test Circuit and Waveform

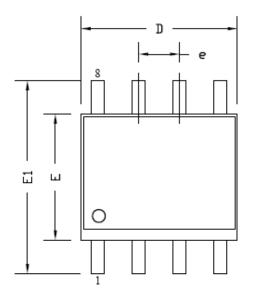
Resistive Switching Test Circuit and Waveforms

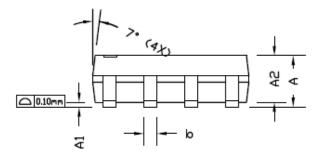


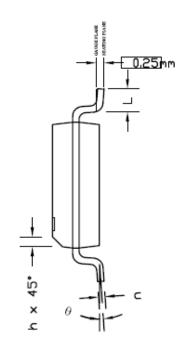

Test circuits for P-Channel


Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

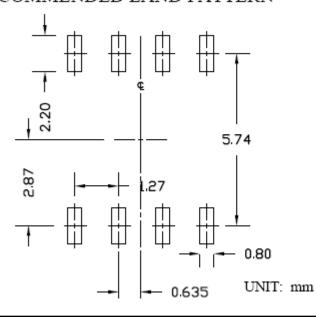
Diode Recovery Test Circuit & Waveforms







Package Outline


SOIC-8

RECOMMENDED LAND PATTERN

SYMBOLS	DIMENSIONS IN MILLIMETERS			
3 IMBOLS	MIN	NOM	MAX	
A	1.35	1.65	1.75	
A1	0.10	0.15	0.25	
A2	1.25	1.50	1.65	
Ъ	0.31	0.41	0.51	
С	0.17	0.20	0.25	
D	4.80	4.90	5.00	
Е	3.80	3.90	4.00	
e	1	.27 BSC		
E1	5.80	6.00	6.20	
h	0.25	0.30	0.50	
L	0.40	0.69	1.27	
θ	0°	4°	8°	
	-			