

Please visit our website for more information: www.upi-semi.com

The contents of this document are provided in connection with uPI Semiconductor Corp. ("uPI") products. uPI makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice.

No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights, is granted by this publication. Except as provided in uPI's terms and conditions of sale for such products, uPI assumes no liability whatsoever, and uPI disclaims any express or implied warranty relating to sale and/or use of uPI products, including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. uPI products are not designed, intended, authorized or warranted for use as components in systems intended for medical, life-saving, or life sustaining applications. uPI reserves the right to discontinue or make changes to its products at any time without notice.

uPI, uPI design logo, and combinations thereof, are trademarks or registered trademarks of uPI Semiconductor Corp. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

N-Channel 40V Fast Switching MOSFET

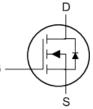
General Description

The QN4103M6N is the highest performance trench N-Channel MOSFET with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

The QN4103M6N meet the RoHS and Green Product requirement with full function reliability approved.

Product Sum	mary	Green RoHS \ HF \ (Pb)
BVDSS	RDSON (VGS=10V)	ID (TC=25°C)
40V	1.4mΩ	255A

Applications


- Synchronous rectifier for Consumer/Computing
 /Industry Power Supply
- Motor
- Load Switch

Features

- Advanced high cell density Trench technology
- Green Device Available

PRPAK 5X6 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	40	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuou <mark>s Drain Current</mark> , V _{GS} @ 10V ¹	255	A
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	161	A
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	31	A
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	24	A
I _{DM}	Pulsed Drain Current ²	510	A
EAS	Single Pulse Avalanche Energy ³	1024.0	mJ
I _{AS}	Avalanche Current	64.0	A
P _D @T _C =25°C	Total Power Dissipation ⁴	156	W
P _D @T _A =25°C	Total Power Dissipation ⁴	2.3	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Typ. Max.		Unit	
R _{0JA}	Thermal Resistance Junction-Ambient ¹	43	54	°C/W	
R _{θJC}	Thermal Resistance Junction-Case	0.6	0.8	°C/W	

© by UBIQ Semiconductor Corp., All Rights reserved.

N-Channel 40V Fast Switching MOSFET

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	40			V
$\triangle BV_{DSS} / \triangle T_J$	BVDSS Temperature Coefficient	Reference to 25° C , I _D =1mA		0.025		V/°C
Parata	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =50A		1.1	1.4	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =4.5V , I _D =30A		1.5	2.0	11122
V _{GS(th)}	Gate Threshold Voltage	-V _{GS} =V _{DS} , I _D =250uA	1.2		2.5	v
$ riangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID-2500A		-5.2		mV/°C
	Drain Source Lookage Current	V _{DS} =32V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =55°C			5	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		94.2		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		0.9		Ω
Qg	Total Gate Charge (10V)	V _{DS} =20V , V _{GS} =10V , I _D =3 <mark>0</mark> A		73.7		
Qg	Total Gate Charge (4.5V)			32.9		
Q _{gs}	Gate-Source Charge	V _{DS} =20V , V _{GS} =4.5 <mark>V</mark> , I _D =30A		16.3		nC
Q _{gd}	Gate-Drain Charge			7.2		1
T _{d(on)}	Turn-On Delay Time			15.2		
Tr	Rise Time	$V_{DD}=20V$, $V_{GS}=10V$, $R_{G}=3.3\Omega$		45.2		
T _{d(off)}	Turn-Off Delay Time	I _D =30A		53.0		ns
T _f	Fall Time			7.2		
Ciss	Input Capacitance			5450		
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		996		pF
C _{rss}	Reverse Transfer Capacitance			35		

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =50V , L=0.5mH , I _{AS} = 46A	529			mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,6}	$V_G = V_D = 0V$, Force Current			255	А
I _{SM}	Pulsed Source Current ^{2,6}				510	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
trr	Reverse Recovery Time	IF=30A , di/dt=100A/µs , Tյ=25℃		44		nS
Qrr	Reverse Recovery Charge			50		nC

Note :

1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.

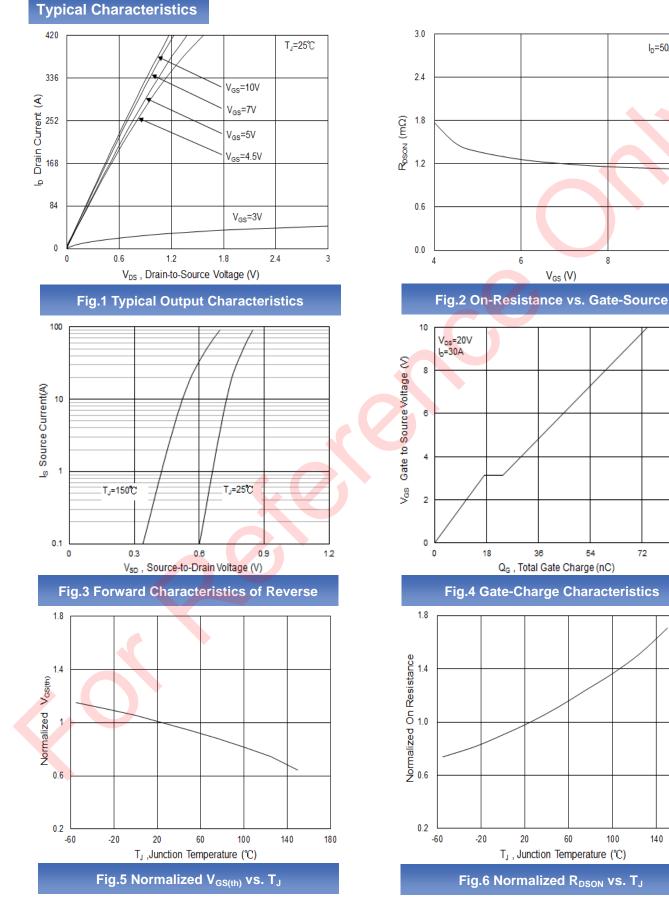
2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is $V_{\text{DD}}\text{=}50V, V_{\text{GS}}\text{=}10V, L\text{=}0.5mH$

4.The power dissipation is limited by 150 $^\circ\text{C}$ junction temperature

5.The Min. value is 100% EAS tested guarantee.

6.The data is theoretically the same as I_{D} and I_{DM} , in real applications , should be limited by total power dissipation.


© by UBIQ Semiconductor Corp., All Rights reserved.

I_D=50A

10

N-Channel 40V Fast Switching MOSFET

© by UBIQ Semiconductor Corp., All Rights reserved.

Confidential

140

180

72

90

N-Channel 40V Fast Switching MOSFET

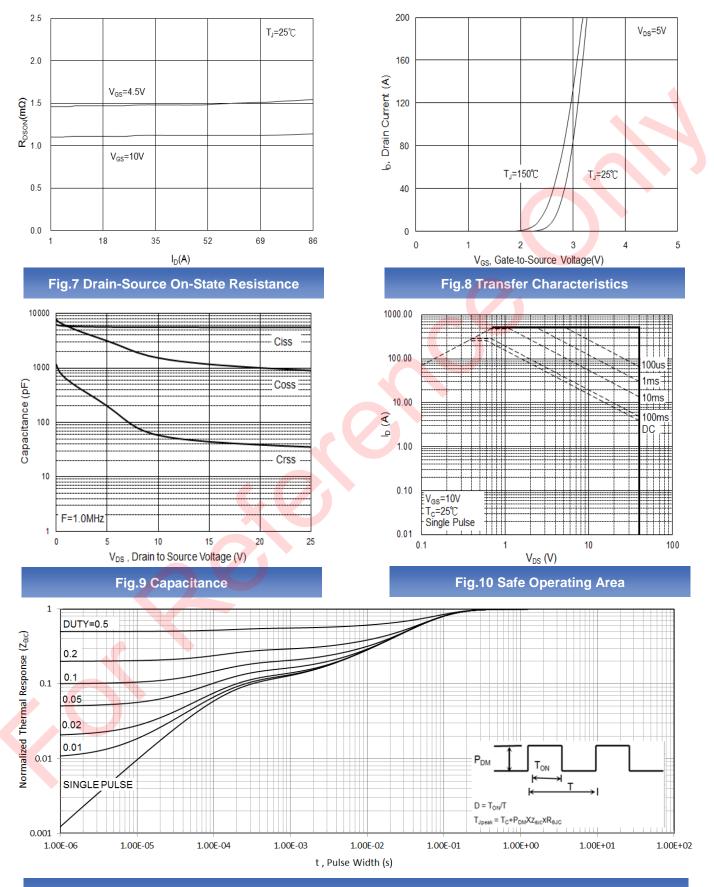
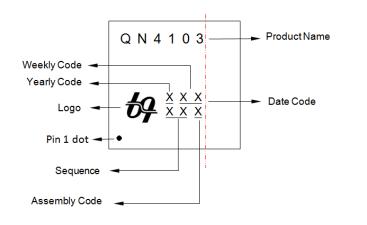


Fig.11 Transient Thermal Impedance


© by UBIQ Semiconductor Corp., All Rights reserved.

Confidential

N-Channel 40V Fast Switching MOSFET

Top Marking

© by UBIQ Semiconductor Corp., All Rights reserved.

N-Channel 40V Fast Switching MOSFET

Important Notice

UBIQ and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

UBIQ products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment. However, no responsibility is assumed by UBIQ or its subsidiaries for its use or application of any product or circuit; nor for any infringements of patents or other rights of third parties which may result from its use or application, including but not limited to any consequential or incidental damages. No UBIQ components are designed, intended or authorized for use in military, aerospace, automotive applications nor in systems for surgical implantation or life-sustaining. No license is granted by implication or otherwise under any patent or patent rights of UBIQ or its subsidiaries.

UBIQ Semiconductor Corp.

Headquarter 9F.,No.5, Taiyuan 1st St. Zhubei City, Hsinchu Taiwan, R.O.C. TEL : 886.3.560.1818 FAX : 886.3.560.1919 Sales Branch Office 12F-5, No. 408, Ruiguang Rd. Neihu District, Taipei Taiwan, R.O.C. TEL : 886.2.8751.2062 FAX : 886.2.8751.5064

© by UBIQ Semiconductor Corp., All Rights reserved.

Confidential