KT 深圳华远微电科技有限公司 SHENZHEN HUAYUAN MICRO ELECTRONIC TECHNOLOGY CO., LTD.

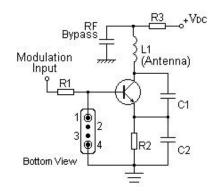
APPROVAL SHEET

Approval Specification	Customer's Approval Certificate
то:	Checked & Approved by:
Part No.:	Date:
Customer's Part No.:	Please return this copy as a certification of your approval

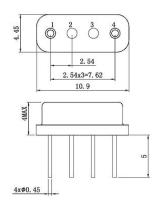
Shenzhen Huayuan Micro Electronic Technology Co.Ltd.

Tel:	+86-0755-29881155-8006	ROHS (Pb)	REACH
Fax:	+86-0755-29881157	compliance Pb free	KEAUN
E-mail:	sfsaw_sales@163.com		
QQ:	3037058772		
Website:	http://www.sfsaw.com http://www.szhywd.net		
Add:	No.5 Zhuangcun Road, Xiner Community,		
	Shajing Street, Baoan District, Shenzhen		

Part No.	:	SFR350D
Pages	:	4
Date	:	2016/8/1
Revision	:	2.0


SFR350D

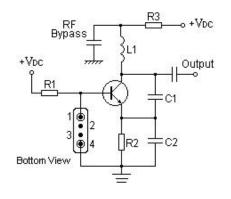
Features


- 1-port Resonator
- Metal Case for SC04-06
- RoHS compatible
- Package Code SC04-06
- Electrostatic Sensitive Device(ESD)

Application

Typical Low-Power Transmitter Application

Package Dimensions (SC04-06)



Marking

- Contraction

Typical Local Oscillator Application

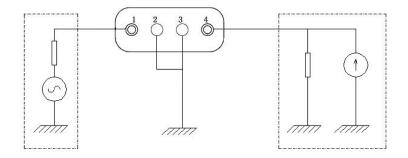
Pin Configuration

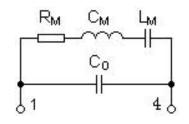
1	Input/ Output		
4	Output/ Input		
2,3	Case Ground		

SF	Trademark
R	SAW Resonator
350D	Part number

Please read notes at the end of this document. - 2 -

www.sfsaw.com


2016/8/1


SAW Resonator

SFR350D

Test Circuit

Equivalent LC Model

Performance

Maximum Rating

ltem		Value	Unit
DC Voltage	V _{DC}	±30	V
Operation Temperature	Т	-40 ~ +85	°C
Storage Temperature	T _{stg}	-40 ~ +85	°C
RF Power Dissipation	Р	25	dBm

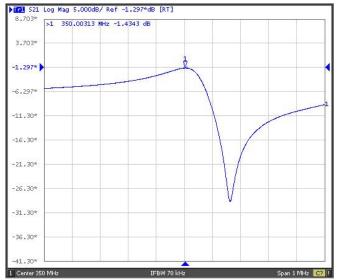
Electronic Characteristics

Test Temperature: 25℃±2℃

Terminating source impedance: 50Ω

Terminating load impedance: 50Ω

Item		Minimum	Typical	Maximum	Unit
Absolute Frequency	fc		350.00		MHz
Tolerance from 350.00MHz	$ riangle f_{c}$		±75		KHz
nin)	IL		1.5	2.0	dB
Unloaded Q	Qu		16531		
50Ω Loaded Q	QL		1754		
Absolute Value during the First Year	f _A		≪10		ppm/yr
esistance between Any Two Pins		1.0			MΩ
Motional Resistance	R _M		11.7	18.3	Ω
Motional Inductance	LM		89.34		μH
Motional Capacitance	См		2.31		fF
Static Capacitance	C ₀	2.5	2.7	3.0	pF
	Absolute Frequency Tolerance from 350.00MHz nin) Unloaded Q 50Ω Loaded Q Absolute Value during the First Year esistance between Any Two Pins Motional Resistance Motional Inductance Motional Capacitance	Absolute Frequency fc Tolerance from 350.00MHz \triangle fc nin) IL Unloaded Q Qu 50Ω Loaded Q QL Absolute Value during the First Year $ f_A $ esistance between Any Two Pins RM Motional Resistance RM Motional Inductance LM Motional Capacitance CM	Absolute Frequency f_c Tolerance from 350.00MHz $\triangle f_c$ nin)ILUnloaded Q Q_U 50Ω Loaded Q Q_L Absolute Value during the First Year $ f_A $ esistance between Any Two Pins1.0Motional Resistance R_M Motional Inductance L_M Motional Capacitance C_M	Absolute Frequencyfc350.00Tolerance from 350.00MHz Δ fc \pm 75nin)IL1.5Unloaded QQu1653150Ω Loaded QQL1754Absolute Value during the First Year $ f_A $ \leq 10esistance between Any Two Pins1.011.7Motional ResistanceR _M 11.7Motional InductanceL _M 89.34Motional CapacitanceC _M 2.31	Absolute Frequency f_c 350.00 Tolerance from $350.00MHz$ $\triangle f_c$ ± 75 nin)IL 1.5 2.0 Unloaded Q Q_U 16531 50Ω Loaded Q Q_L 1754 Absolute Value during the First Year $ f_A $ $\leqslant 10$ esistance between Any Two Pins 1.0 11.7 Motional Resistance R_M 11.7 18.3 Motional Capacitance C_M 2.31


Please read notes at the end of this document. - 3 -

www.sfsaw.com

2016/8/1

SAW Resonator

Frequency Response

Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition
1	Temperature Storage	 (1) Temperature: 85℃±2℃, Duration: 250h, Recovery time: 2h±0.5h (2) Temperature: -40℃±3℃, Duration: 250h, Recovery time: 2h±0.5h
2	Humidity Test	Conditions: 60°C±2°C , 90~95% RH Duration: 250h
3	Thermal Shock	Heat cycle conditions: TA=-40°C±3°C, TB=85°C±2°C, t1=t2=30min, Switch time: ≤3min , Cycle time: 100 times , Recovery time : 2h±0.5h.
4	Vibration Fatigue	Frequency of vibration: 10~55HzAmplitude:1.5mmDirections: X,Y and ZDuration: 2h
5	Drop Test	Cycle time: 10 times Height: 1.0m
6	Solder Ability Test	Temperature: 245°C±5°C Duration: 3.0s5.0s Depth: DIP2/3 , SMD1/5 SMD1/5
7	Resistance to Soldering Heat	 (1)Thickness of PCB:1mm , Solder condition: 260℃±5℃ , Duration: 10±1s (2)Temperature of Soldering Iron: 350℃±10℃ , Duration: 3~4s , Recovery time : 2 ± 0.5h

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may be soldered. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.

Please read notes at the end of this document. - 4 -

www.sfsaw.com