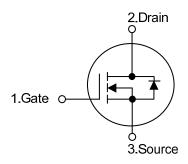
UNISONIC TECHNOLOGIES CO., LTD

10N70K Power MOSFET

10A, 700V N-CHANNEL POWER MOSFET

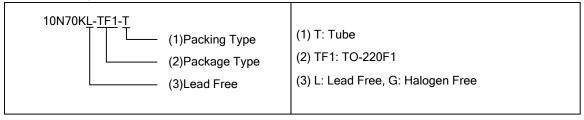
■ DESCRIPTION

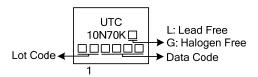

The UTC **10N70K** is an N-channel Power MOSFET using UTC's advanced technology to provide customers a minimum on-state resistance and superior switching performance, etc.

The UTC **10N70K** is generally applied in high efficient DC to DC converters, PWM motor controls and bridge circuits, etc.

■ FEATURES

- * $R_{DS(ON)}$ <1.2 Ω @ V_{GS} = 10V, I_{D} = 5A
- * Low Gate Charge (Typical 44nC)
- * Low C_{RSS} (typical 10 pF)
- * High Switching Speed
- * Improved dv/dt capability


■ SYMBOL


■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
10N70KL-TF1-T	10N70KG-TF1-T	TO-220F1	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

1 TO-220F1

<u>www.unisonic.com.tw</u> 1 of 7

10N70K

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	700	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Avalanche Current (Note 2)		I _{AR}	10	Α	
Drain Current	Continuous	I _D	10	Α	
	Pulsed (Note 2)	I _{DM}	38	Α	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	150	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns	
Power Dissipation		P_D	50	W	
Junction Temperature		TJ	+150	°C	
Operating Temperature		T _{OPR}	-55 ~ +150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

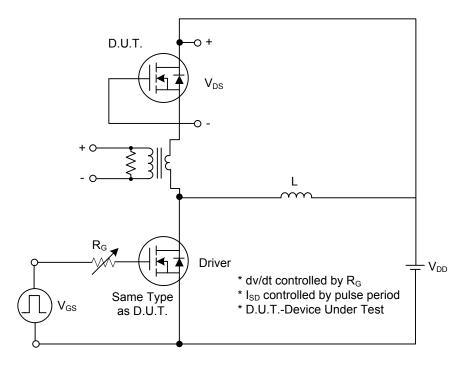
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

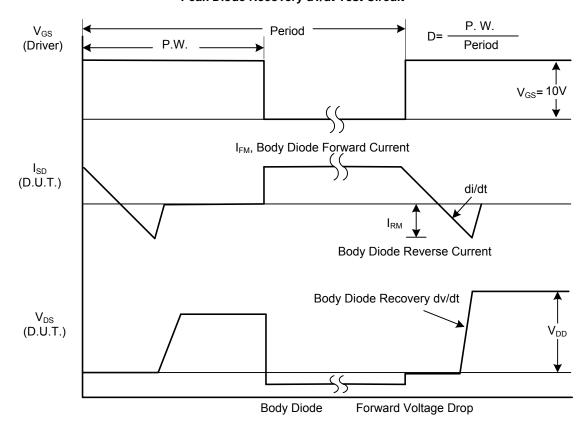
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 3mH, I_{AS} = 10A, V_{DD} = 50V, R_G = 25 Ω Starting T_J = 25°C
- 4. $I_{SD} \le 9.5 A$, di/dt $\le 200 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25 ^{\circ}C$

■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ_{JA}	62.5	°C/W
Junction to Case	$\theta_{ m JC}$	2.5	°C/W

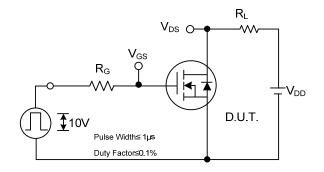

■ ELECTRICAL CHARACTERISTICS(T_C=25°C, unless otherwise specified)

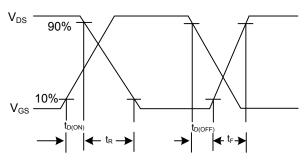
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	700			V
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 700V, V_{GS} = 0V$			1	μΑ
Gate-Source Leakage Current	Forward	1000	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
	Reverse		$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
Breakdown Voltage Temperature		$\Delta BV_{DSS}/\Delta T_{J}$	L =250µA Referenced to 25°C		0.7		V/°C
Coefficient			I _D =250μA, Referenced to 25°C		0.7		V/ C
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-State Res	istance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 5.0A$		1.0	1.2	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{ISS}			1150	1712	pF
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0 MHz		108	125	рF
Reverse Transfer Capacitance		C _{RSS}			10	13	pF
SWITCHING CHARACTERISTIC	S						
Total Gate Charge		Q_{G}	V _{DS} =520V, I _D =10A, V _{GS} =10V (Note 1, 2)		95	110	nC
Gate-Source Charge		Q_GS			8		nC
Gate-Drain Charge		Q_{GD}	(Note 1, 2)		14		nC
Turn-On Delay Time		t _{D(ON)}			90	100	ns
Turn-On Rise Time Turn-Off Delay Time		t _R	V_{DD} =325V, I_{D} =10A, R_{G} =25 Ω		30	90	ns
		t _{D(OFF)}	(Note 1, 2)		210	300	ns
Turn-Off Fall Time		t _F			46	105	ns
DRAIN-SOURCE DIODE CHARA	CTERISTI	CS AND MA	XIMUM RATINGS		ā.		
Maximum Continuous Drain-Source	ce Diode					10	Α
Forward Current		I _S				10	А
Maximum Pulsed Drain-Source Di	ode	I _{SM}				38	Α
Forward Current		ISM				30	^
Drain-Source Diode Forward Voltage		V _{SD}	V _{GS} = 0 V, I _S =10A			1.4	V
Reverse Recovery Time		t _{rr}	$V_{GS} = 0 \text{ V}, I_{S} = 10\text{A},$		420		ns
Reverse Recovery Charge		Q _{rr}	dI _F / dt = 100 A/μs (Note 1)		4.2		μC


Notes: 1. Pulse Test : Pulse width ≤300µs, Duty cycle ≤2%.

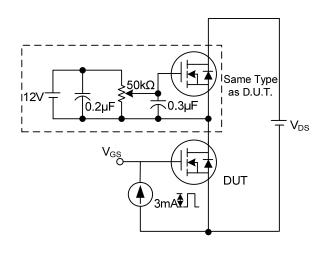
^{2.} Essentially independent of operating temperature.

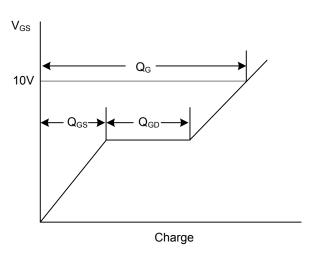
■ TEST CIRCUITS AND WAVEFORMS



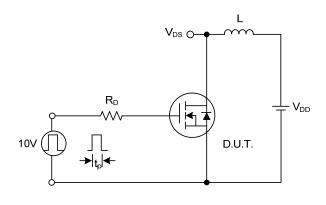

Peak Diode Recovery dv/dt Test Circuit

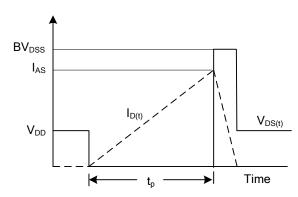
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



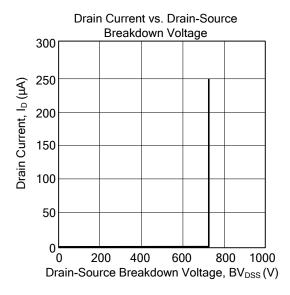
Switching Test Circuit

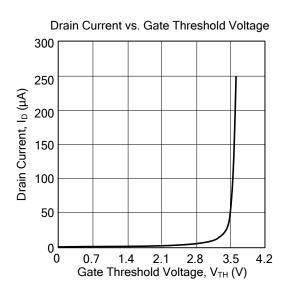

Switching Waveforms

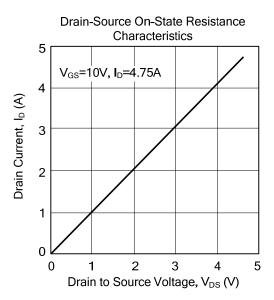


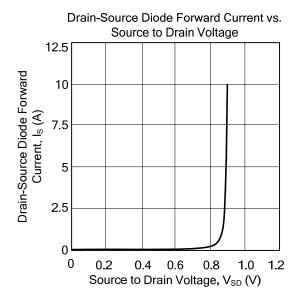
Gate Charge Test Circuit

Gate Charge Waveform






Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.