

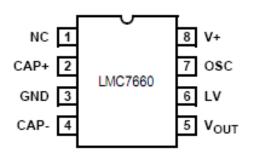
CMOS Voltage Converters

CMOS Voltage Converters

The Intersil LMC7660 are monolithic CMOS power supply circuits which offer unique performance advantages over previously available devices. The LMC7660 performs supply voltage conversions from positive to negative for an input range of +1.5V to +10.0V resulting in complementary output voltages of -1.5V to -10.0V.

Only 2 noncritical external capacitors are needed for the charge pump and charge reservoir functions.

The LMC7660 can also be connected to function as voltage doublers and will generate output voltages up to +18.6V with a +10V input.


Contained on the chip are a series DC supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. A unique logic element senses the most negative voltage in the device and ensures that the output N-Channel switch source-substrate junctions are not forward biased. This assures latchup free operation. The oscillator, when unloaded, oscillates at a nominal frequency of 10kHz for an input supply voltage of 5.0V. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.

The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+3.5V to +10.0V), the LV pin is left floating to prevent device latchup.

Pinouts

DIP8/SOP8

TOP VIEW

Pin Description

Name	Pin#	Function	
NC	1		
CAP+	2	"+" Capacitor Plate	
GND	3	Ground	
CAP-	4	"-" Capacitor Plate	
V _{OUT}	5	Output Voltage	
LV	6	Low Supply Voltage	
OSC	7	Oscillator	
V+	8	Supply Voltage	

Features

- Simple Conversion of +5V Logic Supply to ±5V Supplies
- Simple Voltage Multiplication ($V_{OUT} = (-) nV_{IN}$)
- Typical Open Circuit Voltage Conversion Efficiency 99.9%
- Typical Power Efficiency 98%
- Wide Operating Voltage Range LMC7660 1.5V to 10.0V
- Easy to Use Requires Only 2 External Non-Critical Passive Components

Applications

- On Board Negative Supply for Dynamic RAMs
- Localized µProcessor (8080 Type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

Absolute Maximum Ratings

Supply Voltage				
LMC7660				
LV and OSC Input Voltage0.3V to $(V + +0.3V)$ for $V + < 5.5V$				
(V+ -5.5V) to $(V+ +0.3V)$ for $V+ > 5.5V$				
Current into LV $\dots 20\mu A$ for V+ > 3.5V				
Temperature Range 0°C to 70°C				
Thermal Resistance, θ_{JA} (°C/W)				
Maximum Storage Temperature Range				

Electrical Characteristics (V + = 5V, $T_A = 25^{\circ}C$, $C_{OSC} = 0$, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	I+	$R_L = \infty$	-	170	500	μΑ
Supply Voltage Range - Lo	VL+	$MIN \le T_A \le MAX, R_L = 10k\Omega,$ LV to GND	1.5	-	3.5	V
Supply Voltage Range - Hi	VL+	$MIN \le T_A \le MAX, R_L = 10k\Omega,$ LV to Open	3.0	-	10.0	V
		$I_{OUT} = 20 mA, T_A = 25^{\circ}C$	-	55	100	
Output Source Resistans	R _{OUT}	$I_{OUT} = 20 \text{mA}, 0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C}$	-	-	120	Ω
		V+ = 2V, I_{OUT} = 3mA, LV to GND, 0°C $\leq T_A \leq 70$ °C	-	-	300	
Oscillator Frequency	f _{OSC}		8	-	18	kHz
Power Efficiency	P _{EF}	$R_L = 5k\Omega$	95	98	-	%
Voltage Conversion Efficiency	V _{OUT EF}	$R_L = \infty$	97	99.9	-	%
Oscillator Impedance	Z _{OSC}	V + = 2V	-	1.0	-	MΩ
		V + = 5V	-	100	-	kΩ

TYPICAL APPLICATION CIRCUITS

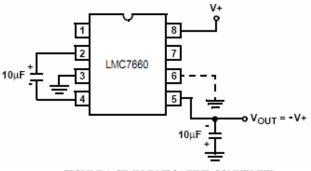


FIGURE 1. SIMPLE NEGATIVE CONVERTER

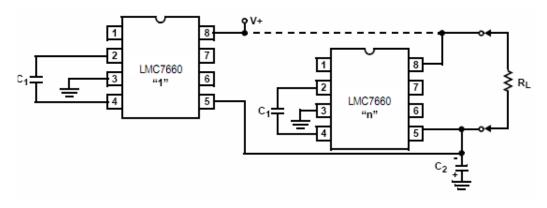


FIGURE 2. PARALLELING DEVICES

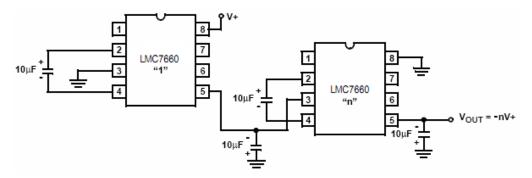


FIGURE 3. CASCADING DEVICES FOR INCREASED OUTPUT VOLTAGE

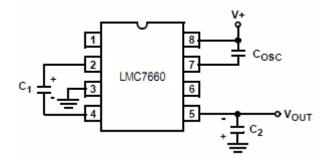


FIGURE 4. LOWERING OSCILLATOR FREQUENCY

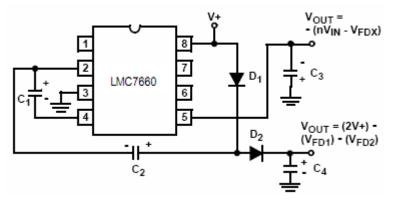


FIGURE 5. COMBINED NEGATIVE VOLTAGE CONVERTER AND POSITIVE DOUBLER

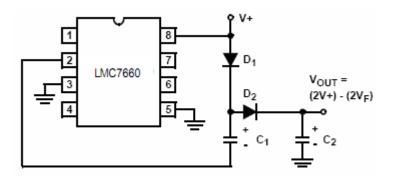


FIGURE 6. POSITIVE VOLT DOUBLER

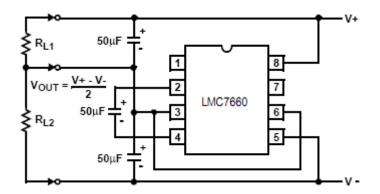


FIGURE 7. SPLITTING A SUPPLY IN HALF

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.