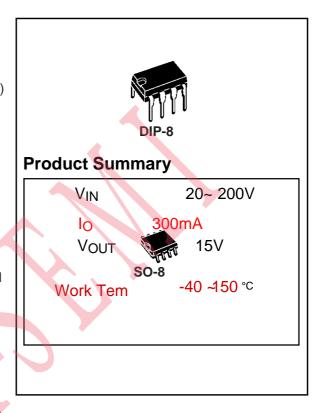
■ OUTPUT SWITCH FIXED VOLTAGE 15V

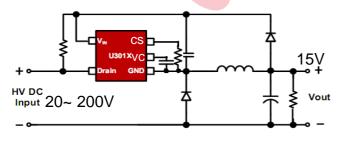
- 2% REFERENCE ACCURACY
- LOW QUIESCENT CURRENT: 15UA (TYP.)
- OPERATING FROM 20V TO 200V
- FREQUENCY OPERATION TO 120KHz(U3012S)
- ACTIVE CURRENT LIMITING

DESCRIPTION

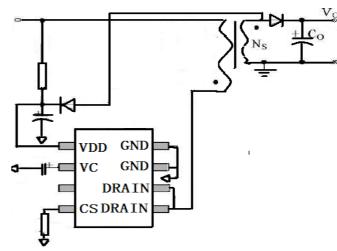
The U301X series is a monolithic control circuit delivering the main functions for DC-DC voltage converting.


The device contains an internal temperature compensated reference, comparator, duty cycle controlled oscillator with an active current limit circuit, driver and high current output switch.

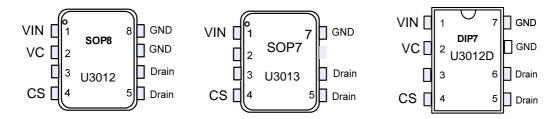
Output voltage is fixed 15V, integrated two external resistors with a 2% reference accuracy.


Employing a minimum number of external components the U301X devices series is designed for Step-Down applications.

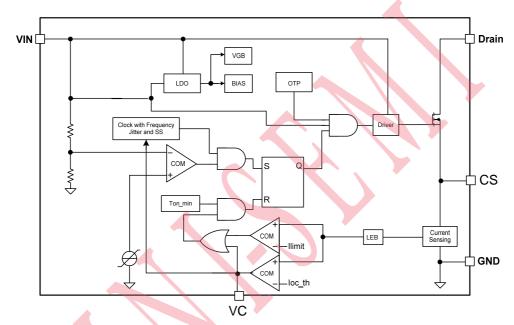
APPLICATIONS


- Electric-Vehicle, Electric-Bicycle Apliance
- Industry Controls

TYPICAL Application CIRCUIT



TYPICAL OUPUT CURRENT TABLE(1)					
Part Number	DCM (2)	CCM (3)			
U3012/U3013	260mA/400mA	300mA/500mA			
U3012D	400mA	500mA			



Pin Configuration

Block Diagram

Pin Description

Pin Number	Pin Name	I/O	Description		
1	VIN	I	The VCC power supply for the U301XX Family and the feedback for the circuit. For the normal operation, a capacitor with 4.7 uF is recommended connected to this pin.		
5/6	Drain	ı	The Power MOSFET Drain.	4	cs
7/8	GND	I/O	The ground reference for the IC	2	

Ordering Information

Part Number	Description		
U3012/U3013	SOP-8, Halogen free in T&R, 2500Pcs/Reel		
U3012D	DIP-7, Halogen free, 50Pcs/Tube		

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{dd}	Power Supply Voltage	26	>
Vir	Comparator Input Voltage Range	-0.3 to 20	V
V_{dra}	Switch Drain Voltage	200	V
V _{sor}	Switch Source Voltage	200	V
V _{ds}	Switch Drain to source Voltage	200	V
V _{dg}	Driver Drain Voltage	200	V
I _{ds}	Driver Drain Current	300	mΑ
I _{SW}	Switch Current	0.5	Α
P _{tot}	Power Dissipation at T _{amb} = 25 °C (for Plastic Package) (for SOIC Package)	1.25 0.625	W
T _{op}	Operating Ambient Temperature Range (for AC SERIES) (for AB SERIES)	- 40 to 1 4 5	°C
T _{stg}	Storage Temperature Range	- 40 to 150	°C

Absolute Maximum Rating are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

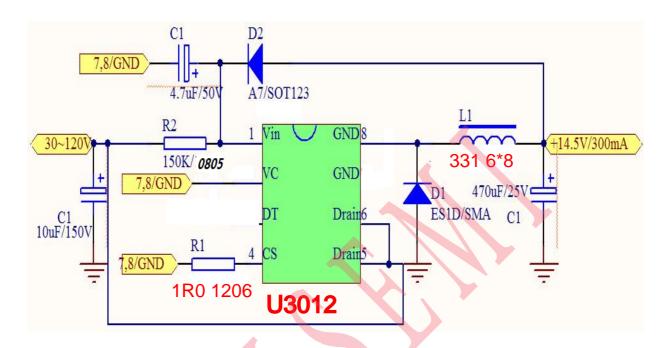
Recommended Operation Conditions (Note 2)

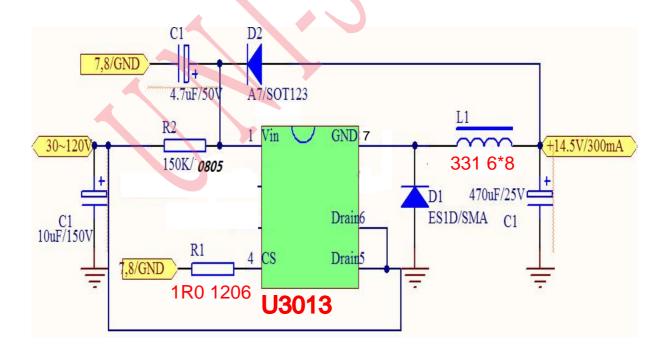
Parameter			Value	Unit
Supply Voltage, DRAIN			20 to 200	V
Operating Junction Temperature		-	-40 to 150	°C

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $V_{cc} = 60V$, $T = T_{LOW}$ to T_{HIGH} , unless otherwise specified, see note 2)

Control Fu	nction Section					
T_LEB	Current Sense Leading Edge Blanking Time	(Note 2)		200		ns
T_{on_min}	Minimum On Time	(Note 2)		300		ns
T_{on_max}	Maximum On Time		10	12	14	us
T _{ss}	Internal Soft Start Time	(Note 2)		5		ms
ı	Name of Book Commont Limit	U3013	380	420	460	mA
I _{limit}	Normal Peak Current Limit	U3012D	530	600	650	mA
. 0)	Over Current Protection	U3012/U3013 Note 2		650		mA
I_{OC_th}	Threshold	U3012D (Note 2)		800		mA
F_{clk}	Internal Frequency Clock	U3012	56	61	66	kHz
F _{clk}	Internal Frequency Clock	U3013	70	85	100	kHz
BV_{DSS}	MOSFET Break Down Voltage	1	200			V
D	Steady State Conduction	U3012/U3013		3/1		Ohm
Resistance		U3012D		1		Ohm
Over Temp	perature	,			1	
T _{SD}	Thermal Shut Down	(Note 2)		140		°C
T _{RC}	Thermal Recovery	(Note 2)		130		°C

Note1. Stresses listed as the above "Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to maximum rating conditions for extended periods may remain possibility to affect device reliability.

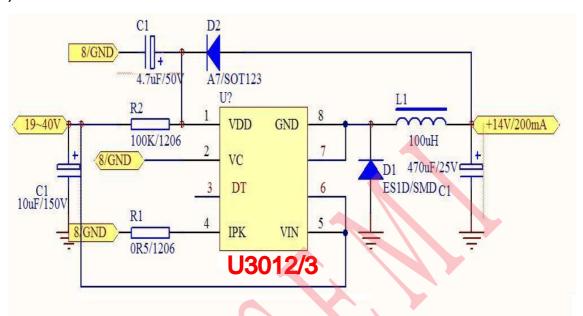

Note2. It's guaranteed by design and functionally tested during production manufacture.

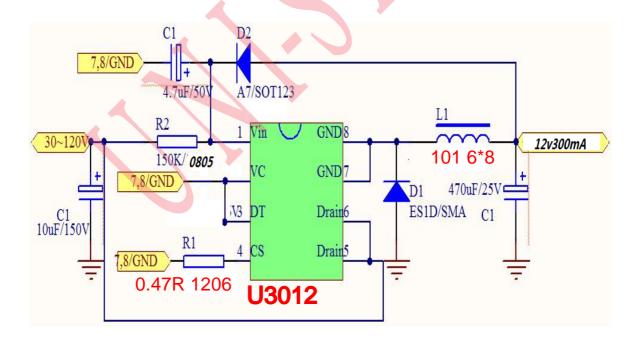


TYPICAL APPLICATION CIRCUIT

Step-Down Converter

(1).14.5V/300mA for 30~120V




TYPICAL APPLICATION CIRCUIT

Step-Down Converter

(2).14.5V/200mA for 19~40V

(3).12V/200mA for 17~40V

PERATION DESCRIPTION

I Over Temperature Protection

When the IC temperature is over 140 $^{\circ}$ C, the IC shuts down. Only when the IC temperature drops to 80 $^{\circ}$ C, the IC restarts to work.

I Light Load Mode Operation

To save more power loss in no load condition, U301X family adopts a light load mode operation. When the switching period is longer than 300us, the peak current limit will be decreased to 100mA. With this feature, ultra no load power loss consumed by the pre-load can be <5mW.

I The Selection of the DC Output Stage

The output power rage determines the selection of the CS and LX design. For Pout<4W, it's recommended to use paraeter rectification; for Pout>4W, it's recommended to use dip8 paraeter rectification.

COMPONENTS SELECTION

I Start-Up Resistor (R_{ST}) and Hold-up Capacitor (C_{VIN})

To keep proper start-up operation and meet the start-up time requirement, the value of the VIN capacitor C_{VIN} and start-up resistor R_{ST} need well designed.

Firstly make sure the current flowing through the RST is larger than the IC start-up current I_VIN_ST (3uA typically) and lower than the IC operation current I_VIN_op (800uA typically).

$$\frac{V_{\text{in_max}}}{I_{\text{_VIN_op}}} < R_{\text{ST}} < \frac{V_{\text{in_min}}}{I_{\text{__VIN_ST}}}$$

 $V_{\text{in_min}}\text{:}$ The minimum peak value of DC input voltage.

 V_{in_max} : The maximum peak value of DC input voltage. For universal input, V_{in_max} is 180V.

Secondly the VIN capacitor is recommended to be selected by the following equation:

$$C_{\text{VIN}} < \frac{(\frac{V_{\text{in_min}}}{R_{\text{ST}}} - I_{\text{_VIN_ST}}) \cdot T_{\text{ST}}}{V_{\text{IN ON}}}$$

For better line and load regulation, the value of C_{VIN} is recommended to be as small as possible. Typically 4.7uF is recommended. If the VIN capacitance is not big enough to cause the start-up failed; increase the value of C_{VIN} and decrease the RST, re-do the calculation of above equation until ideal start-up performance is got.

For better noise immunity, it's recommended that the VIN capacitor be placed as close as possible to the VIN Pin.

I Freewheeling Diode (D₁)

Diode D1 should be an ultra-fast type. Slow diode is not acceptable, because the inductor is always working in continuous conduction mode during start-up period. Slow diode will cause high current spike which will falsely make the Power MOESFET turned off and prevent the output voltage reach regulation. Slow diode will also cause extra power loss and make the efficiency lower down. A 100V/1A diode with recovery time <50ns is recommended for Buck converter and 200V/A diode with recovery time <50ns is recommended for Buck/Boost converter, such as ES1D and ES2D.

I Feedback Diode (D_F)

The information of the output voltage is sent the IC through the diode DF which can be a slow diode,

such as 1N400X series. To minimize the output voltage error, the forward voltage of D1 and D_F should match. At the same time, the power supply of the IC will be taken place by the output voltage through DF after the soft-start.

I Inductor (L)

For Buck converter, the selection of L can be calculated by the following equation:

$$L = \frac{2 \cdot (V_{in \max} - V_{DS} - V_o) \cdot V_o \cdot I_o}{h \cdot [I_{\lim ir}^2 - (2 \cdot I_o - I_{\lim ir})^2] \cdot (V_{in \min} - V_{DS}) \cdot f_{sw}} \quad \text{for CCM}$$

$$L = \frac{2 \cdot (V_{in \max} - V_{DS} - V_o) \cdot V_o \cdot I_o}{h \cdot I_{\lim ir}^2 \cdot (V_{in \min} - V_{DS}) \cdot f_{sw}} \quad \text{for DCM}$$

For Buck/Boost converter, the selection of L can be calculated by the following equation:

$$L = 2 \cdot \frac{P_o}{h \cdot [I_{\text{lim}it}^2 - (2 \cdot I_o - I_{\text{lim}it})^2] \cdot f_{sw}} \quad \text{for CCM}$$

$$L = 2 \cdot \frac{P_o}{h \cdot I_{\text{lim}it}^2 \cdot f_{sw}} \quad \text{for DCM}$$

Where:

When $I_o > I_{limit}/2$, it's working in CCM operation mode; when $I_o < I_{limit}/2$, it's working in DCM operation mode.

 $V_{\text{in_min}}$: The minimum DC input voltage after the rectified diode bridge. It's recommended to keep $V_{\text{in_min}}$ higher than 70V always.

 η : The overall estimated efficiency, the typical value of 0.8 is recommended for DCM and 0.7 for CCM.

V_o: The averaged output voltage.

lo: The averaged output current.

V_F: The forward conduction voltage of the freewheeling diode D1.

V_{DS}: The MOSFET conduction voltage during it's turned on. The typical value of 5V is recommended

F_{sw}: The switching frequency and 56 kHz is recommended.

 I_{limit} : The minimum peak inductor current limit. For U3012S, it's 380mA; for U3012D it's 560mA.

Any standard off-the-shelf inductor that meets the design requirement can be selected. The value of the inductor L determines the averaged switching frequency according to the rule of power balance. Typically a 0.68mH-2.2mH inductor is recommended to be used with Isat>0.6A for U3012S and Isat>0.8A for U3012D.

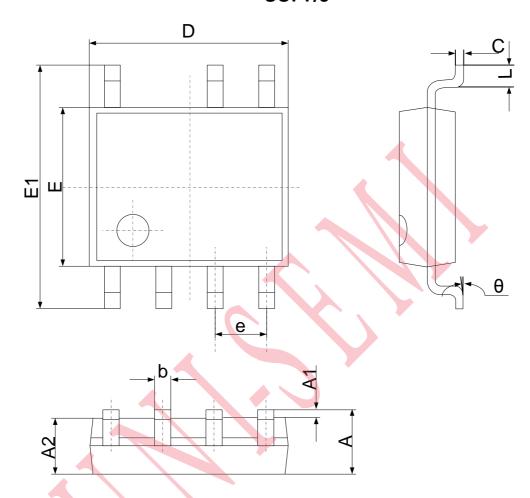
I Output Capacitor (Cout)

The selection of output capacitor is determined by the requirement of the output voltage ripple. To make the output ripple small enough, a large value of C_{OUT} is needed. But large value of C_{OUT} will increase the cost and need longer time for soft-start. Typically a capacitor with 100uF/35V is recommended.

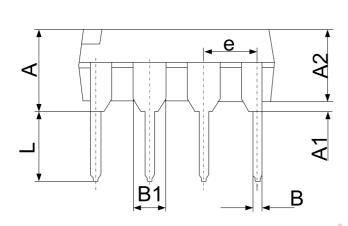
I Pre-Load Resistor (RL)

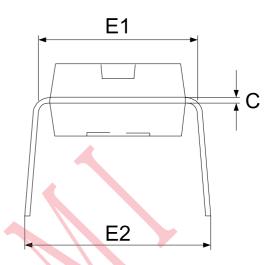
At no load condition, the switching frequency is determined by the value of C_{VIN} and the operation current of the IC not by the output voltage information. Combined with the value of the selection of inductor L1, there's a minimum input power for this circuit. To keep the regulation of the output voltage at no load condition, a minimum load current is needed. For 15V application, a resistor with value around of 30k ohm is recommended.

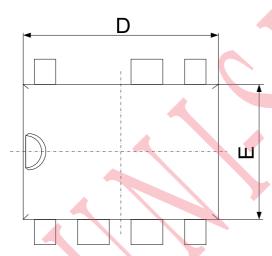
Table 1 shows the relationship between these circuit parameters and the key operation performance.


Table 1

	Start-up Time	Output Ripple	No Load
R _{ST} ↑	1	→	↓
C _{VIN} ↑	1	1	↓
L↑	↓	1	1
C _{OUT} ↑	1	↓	→


Package Dimension


SOP7/8



Symbol	Dimensions In Millimeters		Dimension	s In Inches	
Symbol	Min	Max		Min	
Α	1.350	1.750	Α	1.350	
A1	0.100	0.250	A1	0.100	
A2	1.350	1.550	A2	1.350	
b	0.330	0.510	b	0.330	
С	0.170	0.250	С	0.170	
D	4.700	5.100	D	4.700	
е	1.270 (BSC)	0.050 (BSC)	е	1.270 (BSC)	
E1	5.800	6.200	E1	5.800	
E	3.800		4.0	000	
L	0.400	1.270	L	0.400	
θ	0°	8°	θ	0°	

DIP7

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	3.710	4.310	0.035	0.047	
A1	0.510		0.020		
A2	3.200	3.600	0.126	0.142	
В	0.380	0.570	0.015	0.022	
B1	1.524	(BSC)	0.060(BSC)		
С	0.204	0.360	0.008	0.014	
D	9.000	9.400	0.354	0.370	
Е	6.200	6.600	0.244	0.260	
E1	7.320	7.920	0.288	0.312	
е	2.540(BSC)		0.100	(BSC)	
L	3.000	3.600	0.118	0.142	
E2	8.400	9.000	0.331	0.354	