
Sinai Power Technologies

www.sinai-power.com

N-channel Power MOSFET

PRODUCT SUMMARY			
V _{DS} (V) at T _J max.	700		
R _{DS(on)} max. at 25°C (mΩ)	V _{GS} =10V	90	
Q _g max. (nC)	8	5	
Q _{gs} (nC)	1	5	
Q _{gd} (nC)	2	5	
Configuration	sin	gle	

TO-220F

Schematic diagram

Features

- New Technology For High Voltage Device
- ID=30A(Vgs=10V)
- Ultra Low Gate Charge
- Improved dv/dt Capability
- RoHS compliant

Applications

- Switching Mode Power Supplies (SMPS)
- Server and Telecom Power Supplies
- Welding& Battery Chargers
- Solar(PV Inverters)
- AC/DC Bridge Circuits

ORDERING INFORMATION				
Device	SPC65R90G			
Device Package	TO-220F			
Marking	65R90G			

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C, unless otherwise noted)					
Parameter	Symbol	Limit	Unit		
Drain to Source Voltage	V _{DSS}	650	V		
Continuous Drain Current (@T _C =25°C)		30 (1)	А		
Continuous Drain Current (@T _C =100°C)	I _D	19 ⁽¹⁾	Α		
Drain current pulsed (2)	I _{DM}	90 (1)	А		
Gate to Source Voltage	V _{GS}	±30	V		
Single pulsed Avalanche Energy (3)	E _{AS}	810	mJ		
MOSFET dv/dt ruggedness (@V _{DS} =0~400V)	dv/dt	25	V/ns		
Peak diode Recovery dv/dt (4)	dv/dt	15	V/ns		
Total power dissipation (@T _C =25°C)	P _D	33.8	W		
Derating Factor above 25°C	' D	0.27	W/ºC		
Operating Junction Temperature & Storage Temperature	T _{STG} , T _J	-55 to + 150	°C		
Maximum lead temperature for soldering purpose	TL	260	°C		
Mounting torque (5)		0.4~0.6	N.m		

Notes

- 1. Drain current is limited by maximum junction temperature.
- 2. Repetitive rating : pulse width limited by junction temperature.
- 3 L =20mH, I_{AS} = 9A, V_{DD} = 50V, R_{G} =25 Ω , Starting at T_{J} = 25 $^{\circ}$ C
- I_{SD} ≤ I_D, di/dt = 100A/us, V_{DD} ≤ BV_{DSS}, Starting at T_J =25°C
 Mounting consideration for TO220 Fullpack:
- M3 screw plus flat washer is suggested, free of burr between devices and contact area, the devices are to be mounted to a hole not larger than 3.6mm in contact diameter (chamfer included).

Sinai Power Technologies

www.sinai-power.com

THERMAL CHARACTERISTICS				
Parameter	Symbol	Value	Unit	
Thermal resistance, Junction to case	R _{thjc}	3.7	°C/W	
Thermal resistance, Junction to ambient	R _{thja}	38	°C/W	

ELECTRICAL CHARACTERISTICS (To	ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise specified)						
Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit	
Off Characteristics							
Drain to source breakdown voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	650			V	
Breakdown voltage temperature coefficient	ΔBV _{DSS} / ΔTJ	I _D =250uA, referenced to 25°C		0.38		V/°C	
Durain to a compa la alcana accurant		V _{DS} =650V, V _{GS} =0V			1	uA	
Drain to source leakage current	I _{DSS}	V _{DS} =520V, T _C =125°C			50	uA	
Gate to source leakage current, forward	1	V _{GS} =30V, V _{DS} =0V			100	nA	
Gate to source leakage current, reverse	I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	nA	
On Characteristics							
Gate threshold voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250uA	2.5		4.5	V	
Drain to source on state resistance	R _{DS(ON)}	V _{GS} =10V, I _D =15A		80	90	mΩ	
Forward Transconductance	Gfs	$V_{DS} = 30 \text{ V}, I_{D} = 15 \text{A}$		28		S	
Gate Resistance	Rg	$V_{DS} = 0 V$		1.2		Ω	
Dynamic Characteristics							
Input capacitance	C _{iss}			3010			
Output capacitance	Coss	V_{GS} =0V, V_{DS} =200V, f=1MHz		102		pF	
Reverse transfer capacitance	C _{rss}	V _{GS} =0V, V _{DS} =200V, f=1MHz		2.5		1	
Turn on delay time	t _{d(on)}			32			
Rising time	tr	V _{DS} =320V, I _D =15A ,		72			
Turn off delay time	t _{d(off)}	R_G =25 Ω		110		ns	
Fall time	t _f			67			
Total gate charge	Qg	V _{DS} =520V, V _{GS} =10V, I _D =30A		65	85		
Gate-source charge	Q _{gs}			15		nC	
Gate-drain charge	Q_{gd}			25			

SOURCE TO DRAIN DIODE RATINGS CHARACTERISTICS							
Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit	
Continuous source current	Is	Integral reverse p-n Junction diode in the MOSFET	-		30	Α	
Pulsed source current	I _{SM}				90	Α	
Diode forward voltage drop.	V _{SD}	I _S =30A, V _{GS} =0V	-	0.9	1.2	V	
Reverse recovery time	Trr	I _S =15A, V _{GS} =0V, dI _F /dt=100A/us		405		ns	
Reverse recovery Charge	Qrr			6.8		uC	

www.sinai-power.com

Fig1. Output characteristics

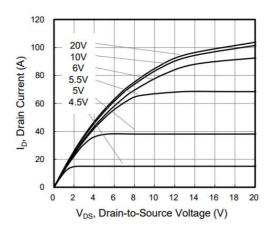


Fig3. Gate charge characteristics

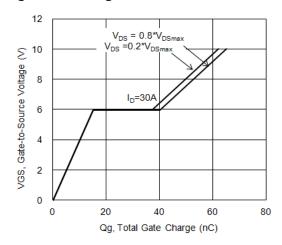


Fig 5. RDS(ON) vs junction temperature

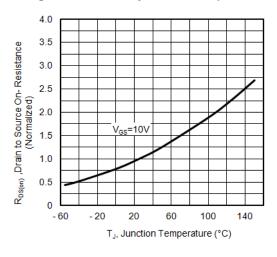


Fig2. Maximum Drain Current vs. Case Temperature

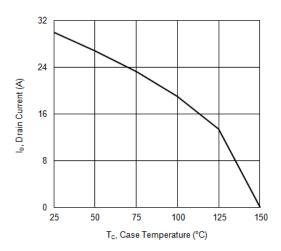


Fig 4. Capacitance Characteristics

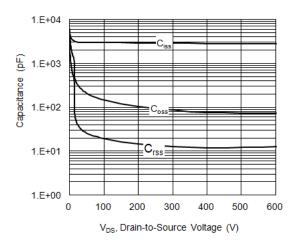
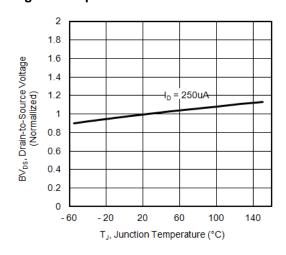



Fig 6. - Temperature vs. Drain-to-Source Voltage

Sinai Power Technologies

www.sinai-power.com

Fig 7. Safe operating area

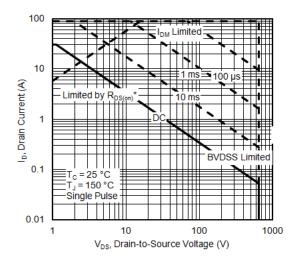


Fig 8. Forward characteristics of reverse diode

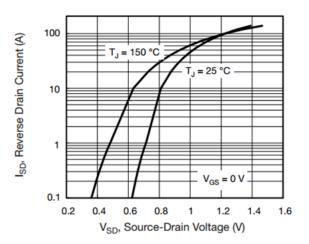


Fig 9. Transient thermal impedance

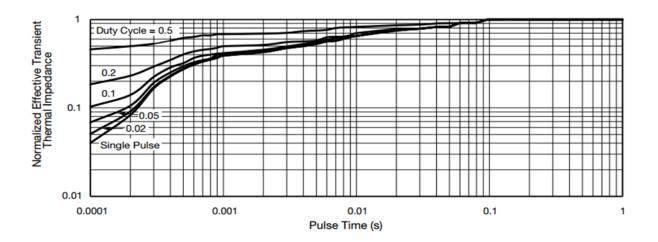
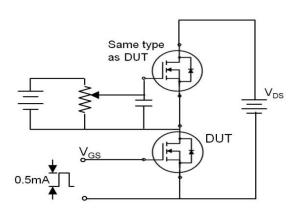
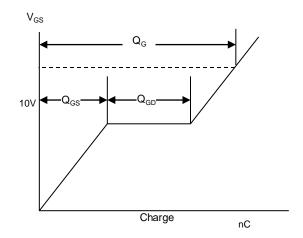




Fig 10. Gate charge test circuit & waveform

www.sinai-power.com

Fig 11. Switching time test circuit & waveform

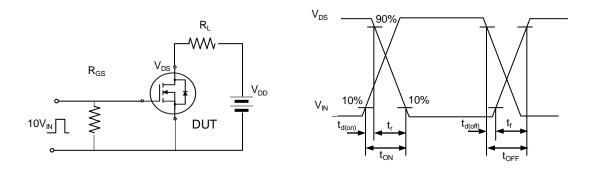


Fig 12. Unclamped Inductive switching test circuit & waveform

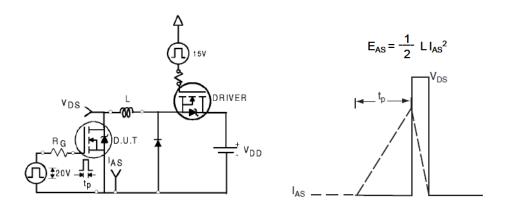
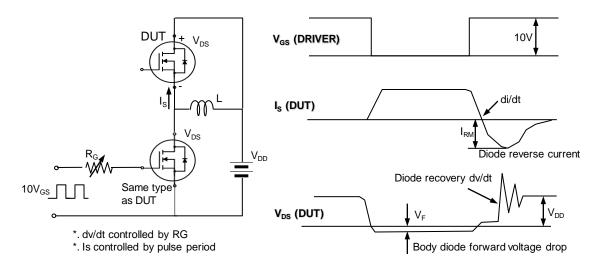



Fig 13. Peak diode recovery dv/dt test circuit & waveform

www.sinai-power.com

Disclaimer

- ♦ SINAI assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SINAI products described or contained herein.
- Specifications of any and all SINAI products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- ◆ In the event that any or all SINAI products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- ◆ This catalog provides information as of Nov. 2014. Specifications and information herein are subject to change without notice.