

GENERAL DESCRIPTION

OB2550M is a high performance offline PSR controller for low power AC/DC charger and adapter applications. It operates in primary-side sensing and regulation. Consequently, opto-coupler and TL431 could be eliminated. Proprietary Constant Voltage (CV) and Constant Current (CC) control is integrated as shown in the figure below.

In CC control, the current and output power setting can be adjusted externally by the sense resistor Rs at CS pin. In CV control, multi-mode operations are utilized to achieve high performance and high efficiency. In addition, good load regulation is achieved by the built-in cable drop compensation. Device operates in PFM in CC mode at large load condition and it operates in PWM with frequency reduction at light/medium load. The chip consumes very low operation current. It achieves less than 30mW standby power to meet strict standby power standard.

OB2550M offers comprehensive protection coverage with auto-recovery feature including Cycle-by-Cycle current limiting, VDD over voltage protection, feedback loop open protection, short circuit protection, built-in leading edge blanking, VDD under voltage lockout (UVLO), OTP etc. OB2550M is offered in SOT23-6 package.

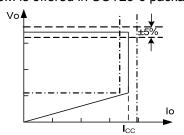
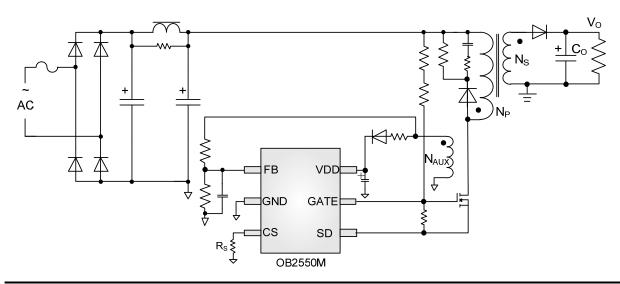


Figure.1. Typical CC/CV Curve

FEATURES

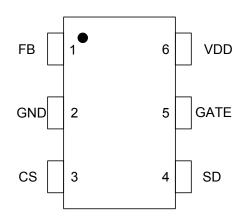

- Primary-side Sensing and Regulation Without TL431 and Opto-coupler
- High Precision Constant Voltage and Current Regulation at Universal AC Input
- Multi-mode PWM/PFM operation for efficiency improving
- Less than 30mW standby power consumption at 230V with typical application circuit
- Good dynamic response
- Programmable CV and CC Regulation
- Built-in Line Voltage and Primary Winding Inductance Compensation
- Programmable Cable Drop Compensation
- No Need For Control Loop Compensation
- Precise Internal Over Temperature Protection
- Audio Noise Free Operation
- Built-in Leading Edge Blanking (LEB)
- Ultra Low Start-up Current and Low Operating Current
- Comprehensive Protection Coverage with auto-recovery
 - VDD Over Voltage Protection
 - VDD Under Voltage Lockout with Hysteresis (UVLO)
 - Cycle-by-Cycle Current Limiting
 - Feedback Loop Open Protection
 - Output Short Circuit Protection
 - Over Temperature Protection (OTP)

APPLICATIONS

Low Power AC/DC offline SMPS for

- Cell Phone Charger
- Digital Cameras Charger
- Small Power Adapter
- Auxiliary Power for PC, TV etc.
- Linear Regulator/RCC Replacement

TYPICAL APPLICATION



GENERAL INFORMATION

Pin Configuration

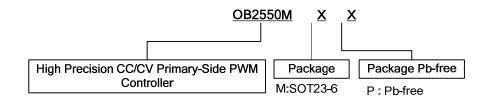
The pin map is shown as below for SOT23-6.

Ordering Information

Part Number	Description				
OB2550MMP	SOT23-6, Pb-free, T&R				

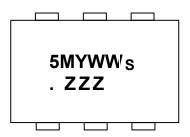
Package Dissipation Rating

Package	RθJA (℃/W)
SOT23-6	200


Absolute Maximum Ratings

Absolute waximum Ratings					
Parameter	Value				
VDD Voltage	-0.3 to 30V				
FB Input Voltage	-0.3 to 7V				
CS Input Voltage	-0.3 to 7V				
SD Input Voltage	-0.3 to 24V				
GATE Input Voltage	-0.3 to 24V				
Min/Max Operating Junction Temperature T _J	-40 to 150 ℃				
Operating Ambient Temperature T _A	-20 to 85 ℃				
Min/Max Storage	-55 to 150 ℃				
Temperature T _{stg}	20.0.00				
Lead Temperature	260 ℃				
(Soldering, 10secs)	200 0				

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


Recommended operating condition

Symbol	Parameter	Range
VDD	VDD Supply Voltage	9 to 24V

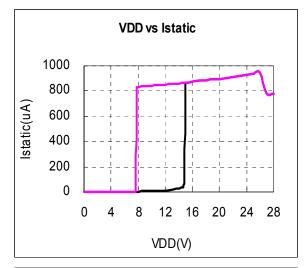
Marking Information

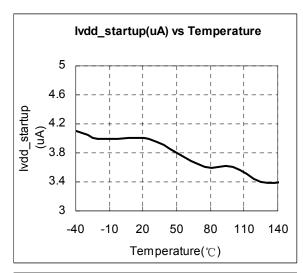
Y:Year Code WW:Week Code(01-52)

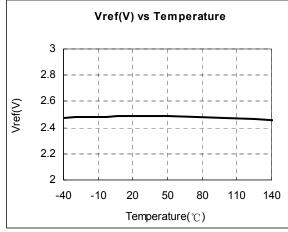
s: Internal code ZZZ: Lot code

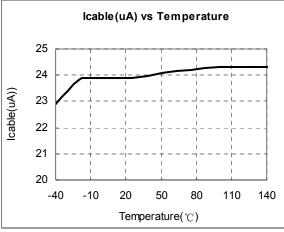
TERMINAL ASSIGNMENTS

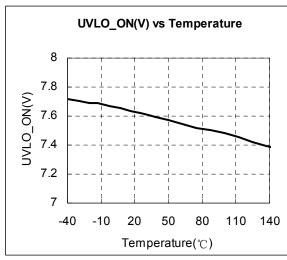
Pin Num	Pin Name	I/O	Description
1	FB	I	The voltage feedback from auxiliary winding. Connected to resistor divider from auxiliary winding reflecting output voltage.
2	GND	Р	Ground
3	CS	I	Power MOSFET source
4	SD	0	Source driver of power MOSFET
5	GATE	0	Gate driver of power MOSFET.
6	VDD	Р	Power Supply

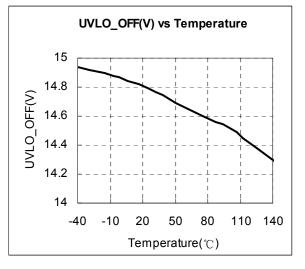

ELECTRICAL CHARACTERISTICS

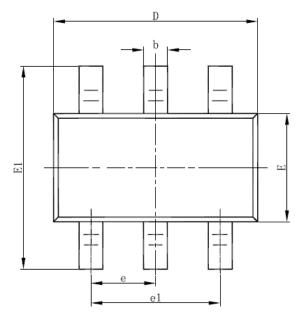

(TA = 25°C, VDD=15V, if not otherwise noted)

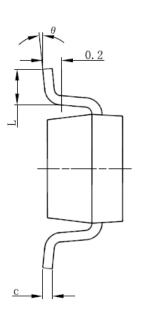

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
Supply Voltage	(VDD) Section		•			
I start-up	Start up current	VDD=UVLO_OFF-1V		5	15	uA
I static	Static current			0.65	1.0	mA
UVLO(OFF)	VDD under voltage lockout exit		13.8	14.8	15.8	V
UVLO(ON)	VDD under voltage lockout enter		7.0	7.6	8.2	٧
VDD_OVP	VDD over voltage protection		25.2	26.2	27.2	V
Max. Operating Voltage					24	٧
Current Sense I	nput Section		•			
TLEB	LEB time			330		ns
TD_OC	OCP propagation delay			100		ns
Vth_ocp_min	Minimum over current threshold		485	500	515	mV
Vth_ocp_max	Maximum over current threshold			565		mV
Vcs_mini	Minimum CS threshold			100		mV
Ton_max	Maximum Ton			50		us
Td_oc	OCP propagation delay			100		ns
FB Input Sectio	n					
Vref_fb	Reference voltage for feedback threshold		2.475	2.50	2.525	V
Tpause_min	Minimum Toff			2.0		us
F_min	Minimum frequency		400	450	500	Hz
Icomp_cable	Maximum cable compensation current		22	24	26	uA
Gate Drive Sect	ion					
V_clamp	Output clamp voltage level		12	13.5	15	٧
Tr	Output rising time	CL=0.22nF		370		ns
Tf	Output falling time	CL=0.22nF		60		ns
Rdson_I	Internal switch on resistor			1.0	2	Ω
lsw_leak	Before startup, SD pin leakage current	Vsw=VDD-1V			1	uA
Output Over Vo	Itage Protection					
V_OVP	Output Over voltage threshold		2.9	3.0	3.1	V
On chip Over temperature Section						
T_otp	Over temperature trigger point		150	165	180	$^{\circ}\!\mathbb{C}$
T_otp_rec	Over temperature recovery point		115	130	145	$^{\circ}$ C
		•				

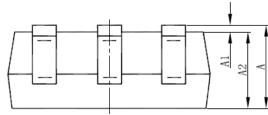



CHARACTERIZATION PLOTS









PACKAGE MECHANICAL DATA

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.000	1.450	0.039	0.057	
A1	0.000	0.150	0.000	0.006	
A2	0.900	1.300	0.035	0.051	
b	0.300	0.500	0.012	0.020	
С	0.080	0.220	0.003	0.009	
D	2.800	3.020	0.110	0.119	
E	1.500	1.726	0.059	0.068	
E1	2.600	3.000	0.102	0.118	
е	0.950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.