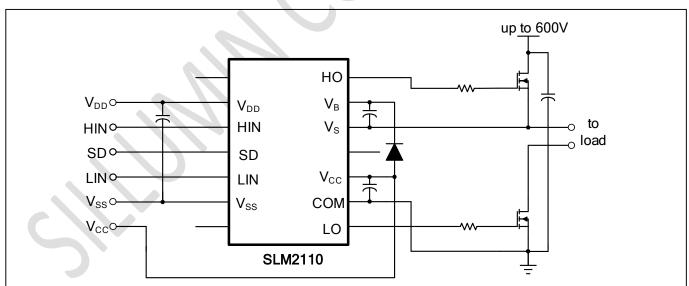


600V High and Low Side Driver

PRODUCT SUMMARY

Voffset
 lo+/ Vout
 ton/off (typ.)
 600 V max.
 2.5 A / 2.5 A
 10 V - 20 V
 130 ns/120 ns

• Delay Matching (typ.) 10 ns


GENERAL DESCRIPTION

The SLM2110 is a high voltage, high speed power MOSFET and IGBT drivers with independent high-and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

FEATURES

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, 5 V, and 15 V logic compatible
- Logic and power ground +/- 5V offset
- Cross-conduction prevention logic
- CMOS Schemitt-triggered inputs with pull-down
- Cycle-by-cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- Outputs in phase with inputs
- RoHS compliant
- SOIC-16 (WB) package

TYPICAL APPLICATION CIRCUIT

(Refer to Lead Assignments for correct configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.

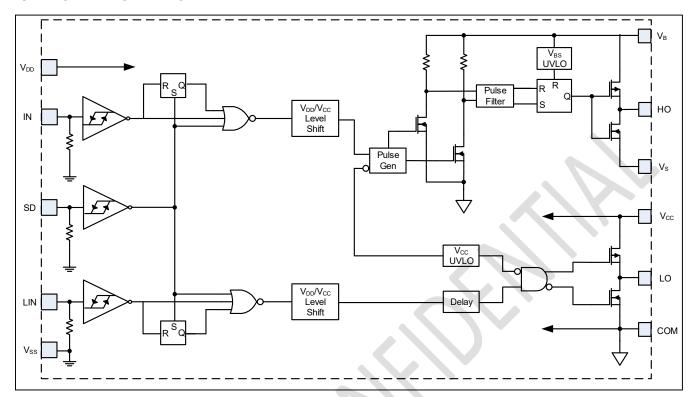
Figure 1 Typical Application Circuit

PIN CONFIGURATION

Package	Pin Configuration (Top View)
SOIC-16 (WB)	9 HO 8 10 V _B 7 11 V _{DD} V _S 6 12 HIN 5 13 SD 4 14 LIN V _{CC} 3 15 V _{SS} COM 2 16 LO 1

PIN DESCRIPTION

No.	Pin	Description
1	LO	Low-side gate drive output
2	СОМ	Low-side return
3	Vcc	Low-side supply
4	NC	No connection
5	NC	No connection
6	Vs	High-side floating supply return
7	V _B	High-side floating supply
8	НО	High-side gate drive output
9	NC	No connection
10	NC	No connection
11	V _{DD}	Logic supply
12	HIN	Logic input for high-side gate driver output (HO), in phase
13	SD	Logic input for shutdown
14	LIN	Logic input for low-side gate driver output (LO), in phase
15	Vss	Logic ground
16	NC	No connection


ORDERING INFORMATION

Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM2110CG	SOIC16 (WB), Pb-Free	1500/Reel

FUNCTIONAL BLOCK DIAGRAM

SLM2110

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition		Min.	Max.	Units
V_B	High-side floating absolute volta	High-side floating absolute voltage		625	
Vs	High-side floating supply offset vo	oltage	V _B - 25	V _B + 0.3	
Vно	High-side floating output volta	ge	Vs - 0.3	V _B + 0.3	
Vcc	Low-side supply voltage		-0.3	25	V
V _{DD}	Logic supply voltage		-0.3	V _{SS} + 20	V
Vss	Logic supply offset voltage		Vcc - 20	V _{CC} + 0.3	
V_{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN, LIN, & SD)		V _{SS} - 0.3	V _{DD} + 0.3	
dVs/dt	Allowable offset supply voltage tra	nsient		50	V/ns
PD	Package power dissipation @ $T_A \le +25^{\circ}C$	SOIC-16 (WB)		1.25	W
Rth _{JA}	Thermal resistance, junction to ambient	SOIC-16 (WB)	/	100	°C/W
TJ	Junction temperature		2	150	
Ts	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 se	conds)		300	

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATIONG CONDITIONS

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating absolute voltage	V _S + 10	Vs + 20	
Vs	High-side floating supply offset voltage	Note 1	600	
Vно	High-side floating output voltage	Vs	V _B	
Vcc	Low-side supply voltage	10	20	V
V_{DD}	Logic supply voltage	V _{SS} + 3	V _{SS} + 20	V
Vss	Logic supply offset voltage	-5	5	
VLO	Low-side output voltage	0	Vcc	
VIN	Logic input voltage (HIN, LIN, & SD)	Vss	V_{DD}	
TA	Ambient temperature	- 40	125	°C

Note:

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_s offset rating is tested with all supplies biased at a 15 V differential.

DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	V _S = 0 V		130	160	
t _{off}	Turn-off propagation delay	V _S = 600 V		120	150	
t _{sd}	Shutdown propagation delay	V _S = 600 V		130	160	
t _r	Turn-on rise time			25	35	ns
t _f	Turn-off fall time			17	25	
MT	Delay matching, HS & LS turn-on/off			A	10	

STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to V_{SS} and and are applicable to all three logic input leads: HIN, LIN, and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{IH}	Logic "1" input voltage	V - 40 V 4- 00V	10.2			
VIL	Logic "0" input voltage	V _{CC} = 10 V to 20V			5.0	
Vон	High level output voltage, V _{BIAS} - V _O				1.4	V
Vol	Low level output voltage, Vo	I ₀ = 2 mA		0.02	0.15	
I _{LK}	Offset supply leakage current	V _B = V _S = 600 V			50	
I _{QBS}	Quiescent V _{BS} supply current			65	120	
Iqcc	Quiescent V _{CC} supply current	V _{IN} = 0 V or 5 V		300	550	
I _{QDD}	Quiescent V _{DD} supply current			15	30	μA
I _{IN+}	Logic "1" input bias current	V _{IN} = 5V		25	40	
I _{IN-}	Logic "0" input bias current	V _{IN} = 0V			5	
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold		7.5	8.9	9.7	V
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold		7.4	8.2	9.4	V
Vccuv+	V _{CC} supply undervoltage positive going threshold		7.5	8.9	9.7	V
Vccuv-	V _{CC} supply undervoltage negative going threshold		7.4	8.2	9.4	V
I _{O+}	Output high short circuit pulsed current	$V_O = 0 \text{ V}$ $V_{IN} = \text{Logic "1"}$ $PW \leqslant 10 \mu\text{s}$	2.0	2.5		٨
lo-	Output low short circuit pulsed current	V _O = 15 V V _{IN} = Logic "0" PW ≤ 10 μs	2.0	2.5		A

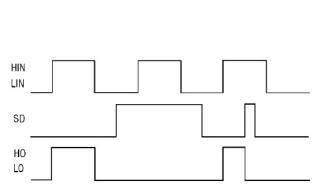


Figure 1. Input/Output Timing Diagram

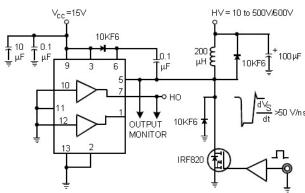


Figure 2. Floating Supply Voltage Transient Test Circuit

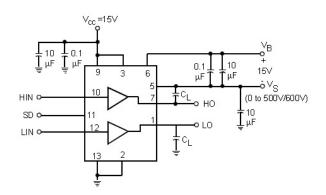


Figure 3. Switching Time Test Circuit

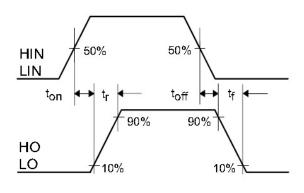


Figure 4. Switching Time Waveform Definition

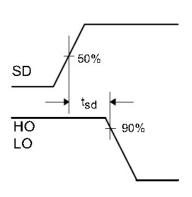


Figure 5. Shutdown Waveform Definitions

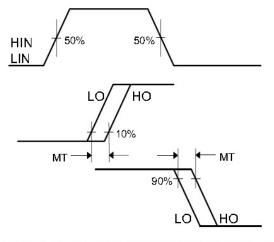
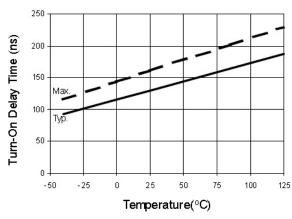



Figure 6. Delay Matching Waveform Definitions

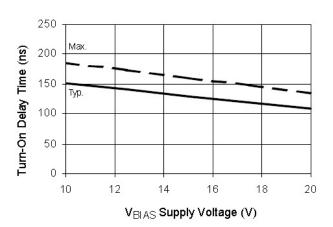
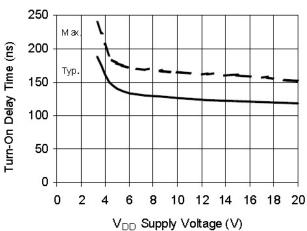



Figure 7A. Turn-On Time vs. Temperature

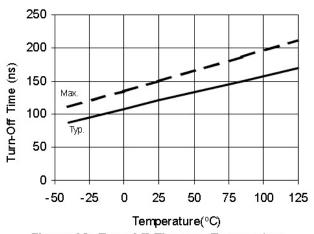
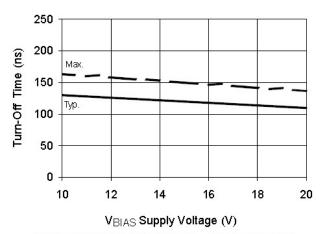



Figure 7C. Turn-On Time vs. V_{DD} Supply Voltage

Figure 8A. Turn-Off Time vs. Temperature

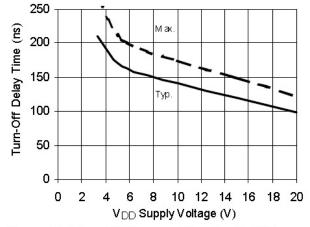


Figure 8B. Turn-Off Time vs. Supply Voltage

Figure 8C. Turn-Off Time vs. VDD Supply Voltage

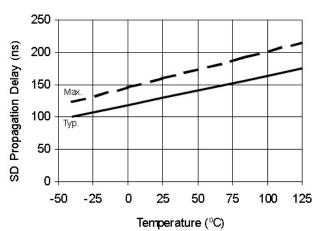


Figure 9A. Shutdown Time vs. Temperature

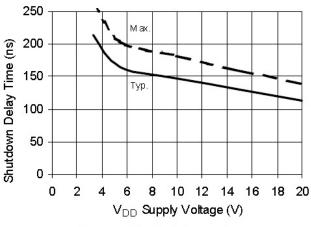


Figure 9C. Shutdown Time vs. VDD Supply Voltage

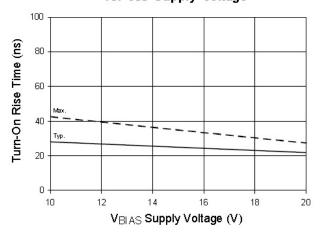


Figure 10B. Turn-On Rise Time vs. Voltage

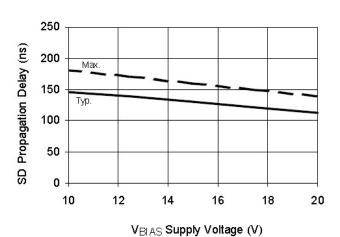


Figure 9B. Shutdown Time vs. Supply Voltage

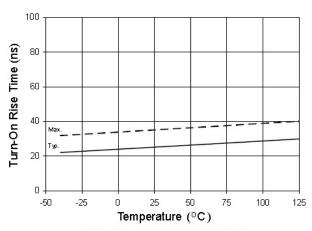


Figure 10A. Turn-On Rise Time vs. Temperature

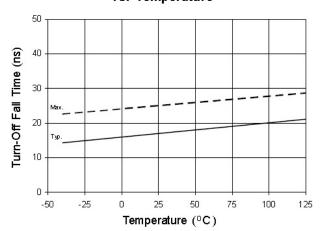


Figure 11A. Turn-Off Fall Time vs. Temperature

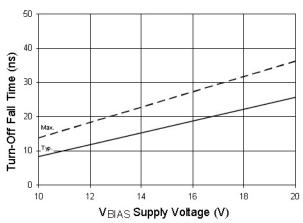


Figure 11B. Turn-Off Fall Time vs. Voltage

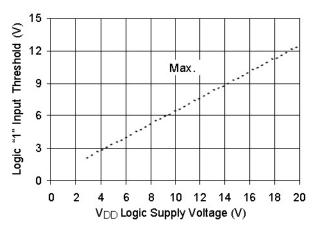


Figure 12B. Logic "1" Input Threshold vs. Voltage

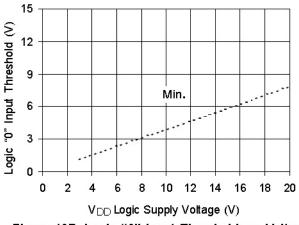


Figure 13B. Logic "0" Input Threshold vs. Voltage

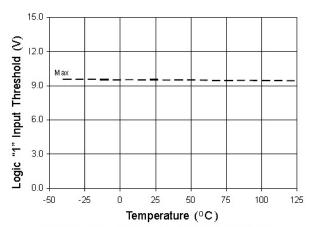


Figure 12A. Logic "1" Input Threshold vs. Temperature

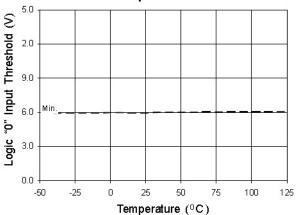


Figure 13A. Logic "0" Input Threshold vs. Temperature

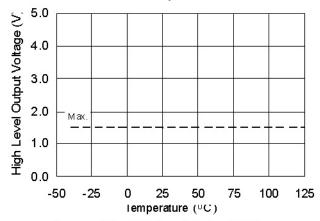
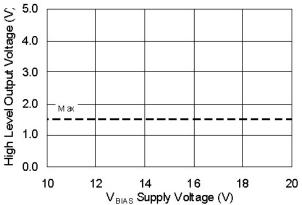
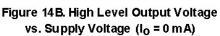




Figure 14A. High Level Output Voltage vs. Temperature (I_O = 0 mA)

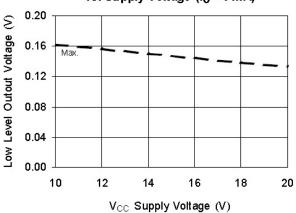


Figure 15B. Low Level Output vs. Supply Voltage

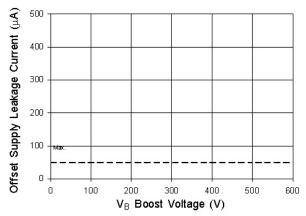


Figure 16B. Offset Supply Current vs. Voltage

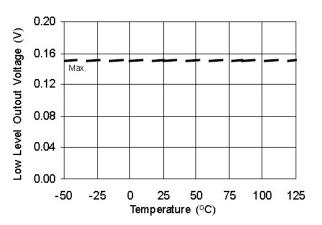


Figure 15A. Low Level Output vs. Temperature

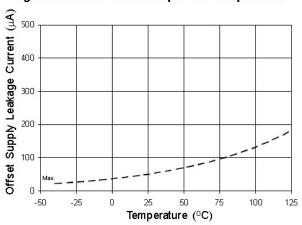


Figure 16A. Offset Supply Current vs. Temperature

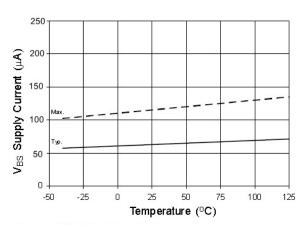


Figure 17A. VBS Supply Current vs. Temperature

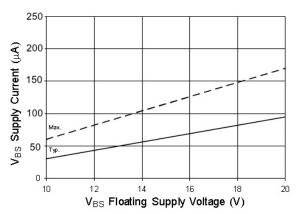


Figure 17B. V_{BS} Supply Current vs. Voltage

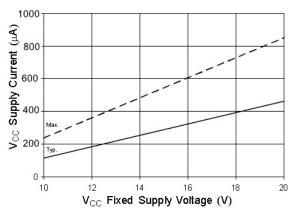


Figure 18B. Vcc Supply Current vs. Voltage

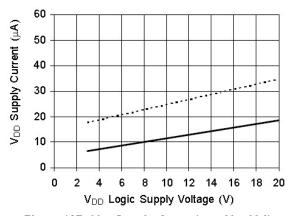


Figure 19B. V_{DD} Supply Current vs. V_{DD} Voltage

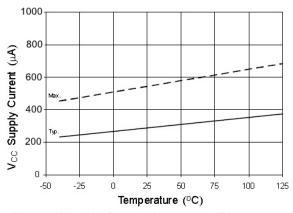


Figure 18A. V_{CC} Supply Current vs. Temperature

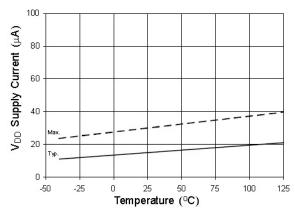


Figure 19A. V_{DD} Supply Current vs. Temperature

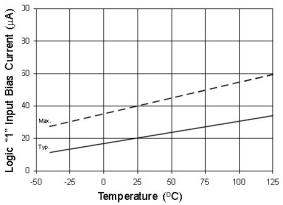


Figure 20A. Logic "1" Input Current vs. Temperature

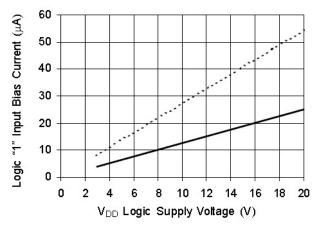


Figure 20B. Logic "1" Input Current vs. Vod Voltage

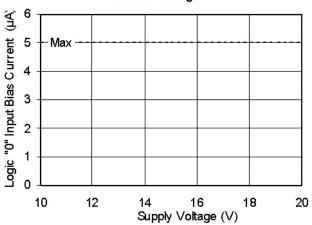


Figure 21B. Logic "0" Input Bias Current vs. Voltage

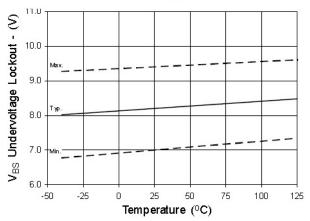


Figure 23. V_{BS} Undervoltage (-) vs. Temperature

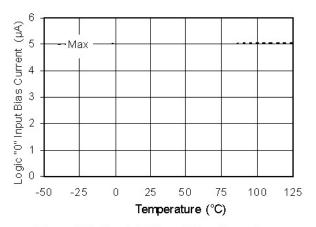


Figure 21A. Logic "0" Input Bias Current vs. Temperature

Figure 22. VBS Undervoltage (+) vs. Temperature

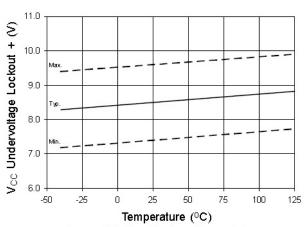


Figure 24. Vcc Undervoltage (+) vs. Temperature

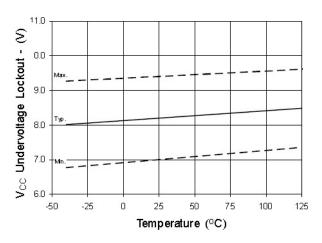


Figure 25. Vcc Undervoltage (-) vs. Temperature

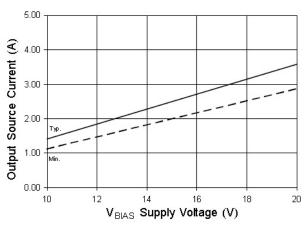


Figure 26B. Output Source Current vs. Voltage

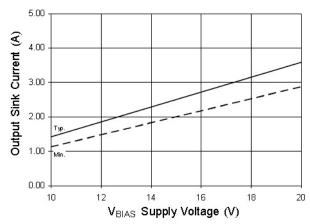


Figure 27B. Output Sink Current vs. Voltage

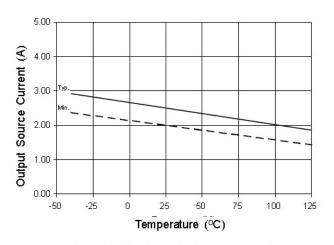


Figure 26A. Output Source Current vs. Temperature

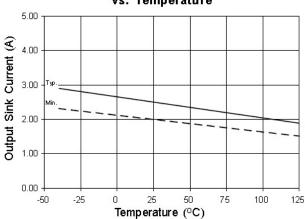
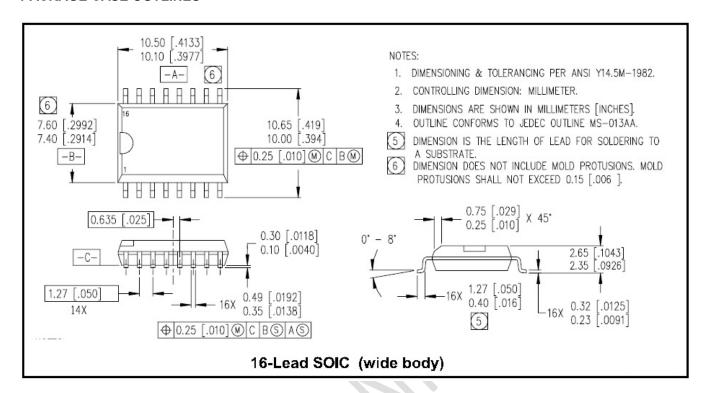



Figure 27A. Output Sink Current vs. Temperature

PACKAGE CASE OUTLINES

Revision History

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	Subjects (major changes since previous revision)		
Rev 1.0 datasheet, 2019)-8-27		
Whole document	New company logo released		
Page 1	Remove "May 2019"		