

产品应用

- 电池供电设备
- 手持式示波器
- 低成本数字示波器
- I/Q 通信

产品特点

分辨率:双通道 8bit采样率: 100MSPS

• SNR > 44dB

● 输入范围 1Vp-p

● 单3V供电

产品描述

CBM92AD88TQ 型双通道高速 A/D 转换器 是采用 CMOS 工艺制造的单片集成电路,将输入 的模拟信号转换为数字信号输出,主要用于采集宽 带信号。

图 1 为 CBM92AD88TQ型 A/D 转换器的原理 图。该电路内含高精度基准、时钟电路、流水线信 号处理电路、输出数字校正电路、数字输出接口电 路等单元,专为高频、宽动态范围信号数字化处理 而设计,模拟输入必须由一个差分输入信号驱动。

该产品采用 48 引线封装 (LQFP48),可有效替代美国 ADI 公司的 AD9288BST-100。该产品功能框图如下:

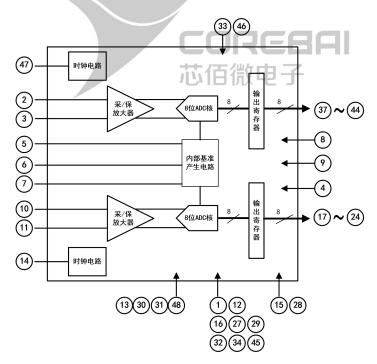
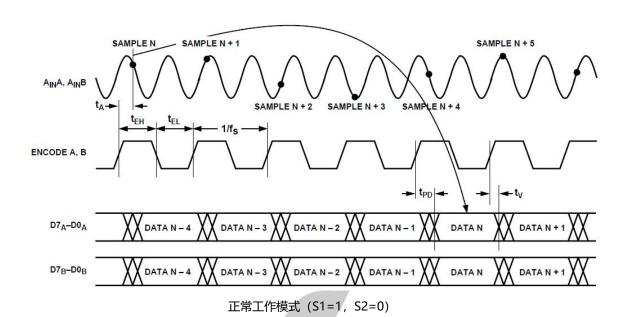
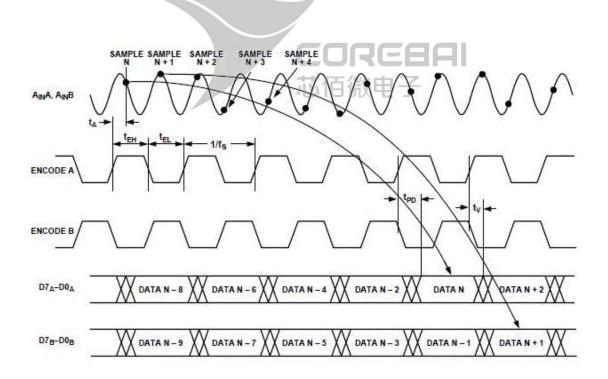
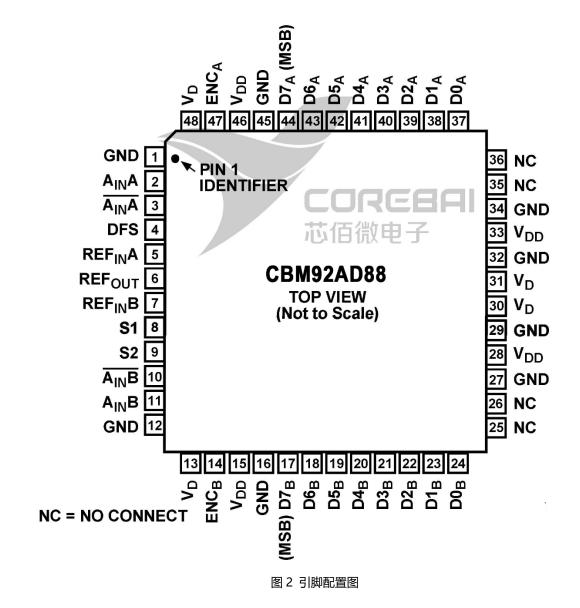




图 1 功能框图

时序图


数据对齐输出模式 (S1=1, S2=1)

真值表:

S1	S2	功能介绍
0	0	同时关断 A、B 路
0	1	A 路工作, B 路关断
1	0	A,B 路同时正常工作
1	1	数据对齐输出模式

引脚配置图

引脚简述

引出端序号	符号	功能	引出端序号	符号	功能
1	GND	地	25	NC	空
2	A _{INA+}	A 通道模拟输入	26	NC	空
3	A _{INA-}	A 通道模拟输入 (互补)	27	GND	地
4	DFS	数据格式选择。低为输出偏移 二进制码,高为输出 2 的补码	28	$V_{\mathtt{DDD}}$	数字电源(3V)
5	REF _{INA}	A 通道参考电压输入	29	GND	地
6	REF _{OUT}	内部参考电压	30	V_{DDA}	模拟电源(3V)
7	REF _{INB}	B 通道参考电压输入	31	V_{DDA}	模拟电源(3V)
8	S ₁	选择端 1	32	GND	地
9	S ₂	选择端 2	33	V_{DDD}	数字电源(3V)
10	A_{INB}	B 通道模拟输入 (互补)	34	GND	地
11	A _{INB+}	B 通道模拟输入	35	NC	空
12	GND	地	36	NC	空
13	V_{DDA}	模拟电源(3V)	37	D _{0A}	A 通道数字输出
14	ENC _B	B 通道时钟输入	38	D _{1A}	A 通道数字输出
15	V_{DDD}	数字电源(3V)	自微级子	D _{2A}	A 通道数字输出
16	GND	地	40	D _{3A}	A 通道数字输出
17	D _{7B}	B 通道数字输出	41	D _{4A}	A 通道数字输出
18	D _{6B}	B 通道数字输出	42	D _{5A}	A 通道数字输出
19	D _{5B}	B 通道数字输出	43	D _{6A}	A 通道数字输出
20	D_{4B}	B 通道数字输出	44	D _{7A}	A 通道数字输出
21	D _{3B}	B 通道数字输出	45	GND	地
22	D _{2B}	B 通道数字输出	46	V_{DDD}	数字电源(3V)
23	D _{1B}	B 通道数字输出	47	ENC _A	A 通道时钟输入
24	D _{0B}	B 通道数字输出	48	V_{DDA}	模拟电源(3V)

推荐工作条件

● 模拟电源电压(V_{DDA}): 3.0V~3.3V

● 数字电源电压(1/DDD): 3.0V~3.3V

● 模拟共模输入电压(V_{CM}): 0.3* V_D

● 时钟输入占空比(*q*): 30%~70%,

典型 50%

逻辑输入高电平 (V_H): ≥2.0V

逻辑输入低电平(以): ≤0.8V

● 最大采样频率(*f*_{sMAX}): 100MHz

● 工作温度 T_A: -45℃~125℃

绝对最大额定值

● 模拟电源电压(V_{DDA}): 4V

● 数字电源电压(V_{DDD}): 4V

● 模拟输入电压(V_{IN}): -0.5V ~ V_{DDA}+0.5V

● 数字输入电压(Ŋ; -0.5V~ V_{DDD}+0.5V

● 数字输出电流(%): 20mA

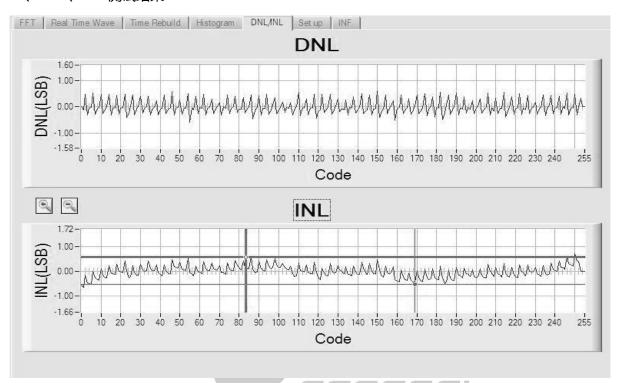
● 贮存温度(T_{stq}): -65℃~150℃

● 结温(万): 175℃

● 引线耐焊接温度(7_h)(10s): 300℃

热阻(θ_{ia}): 57℃/W

性能指标


除另有规定外, $V_{DDA}=3V$, $V_{DDD}=3V$, $f_{clk}=100MHz$, $GND_A=GND_D=0V$,S1=1,S2=0,内部基准, $-55^{\circ}C \le T_A \le 125^{\circ}C$ 。

-55°C≤ I _A ≤ 125°C。								
会业人 5	符号	条件		性能指标			24/2	
参数名称				最小值	典型值	最大值	单位	
分辨率	RES		caac		8	_	bit	
失调误差	E _O	LUIRE		-40		40	mV	
增益误差	E _G	芯佰微电		-8	_	8	%FS	
微分线性误差	E_{DL}			-1.5	0.6	1.5	LSB	
线性误差	<i>E</i> L			-2	0.9	2	LSB	
基准输出电压	V_{REF}			1.2	1.25	1.3	V	
数字输入高电平电压	V_{IH}			2.0	_	_	V	
数字输入低电平电压	$V_{\rm IL}$			_	-8	0.8	V	
数字输出高电平电压 V _{OH}				2.4	_	_	V	
数字输出低电平电压 レ				_	_	0.1	V	
功耗 P _W				-		290	mW	
信噪比	SNR	f _{IN} =10.3MHz	<i>T</i> _A =25°C	44	46	-	dB	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<i>T</i> _A =-55°C、125°C	42	44	-	dB	
工九类二大节目	SFDR	f _{IN} =10.3MHz	<i>T</i> _A =25°C	52	54	_	dBc	
无杂散动态范围 			<i>T</i> _A =-55°C、125°C	50	52	-	dBc	
信噪失真比	SINAD	f _{IN} =10.3MHz	<i>T</i> _A =25°C	43.5	45	_	dB	
旧株人共ル			<i>T</i> _A =-55℃、125℃	41.5	43	_	dB	
最大转换速率	S_R			100	100	-	MSPS	

主要特性曲线图 (电特性测试图)

1、DNL、INL 测试结果

图 3 DNL、INL 测试结果

2、动态参数测试结果

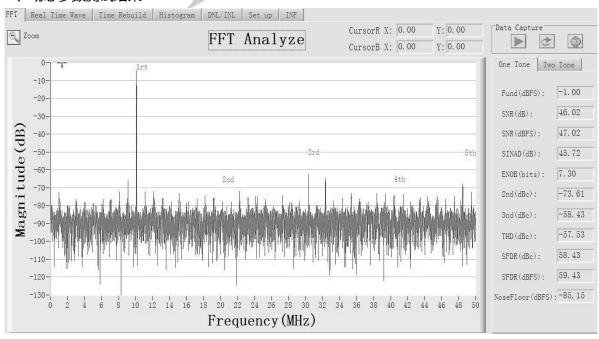


图 4 测试结果(VDDA=VDDD=3V, fCLK=100MHz, fIN=10.3MHz)

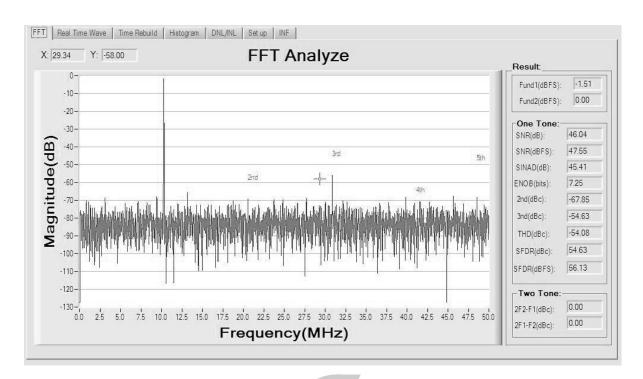


图 5 测试结果(VDDA=VDDD=2.7V, fCLK=100MHz, fIN=10.3MHz)

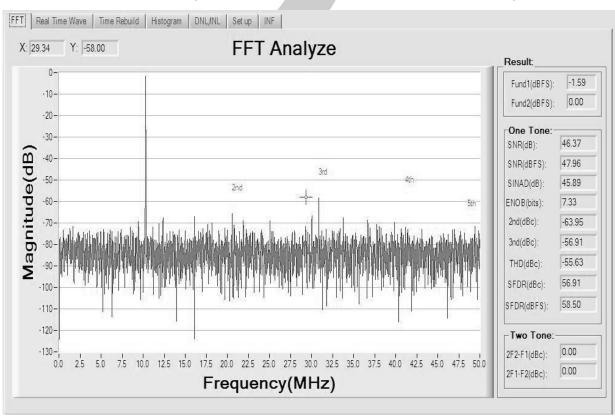


图 6 测试结果(VDDA=VDDD=3.3V, fCLK=100MHz, fIN=10.3MHz)

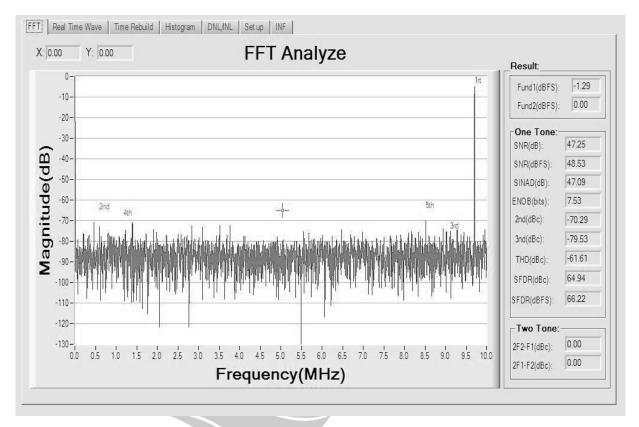


图 7 测试结果(VDDA=VDDD=3.3V, fCLK=20MHz, fIN=10.3MHz)

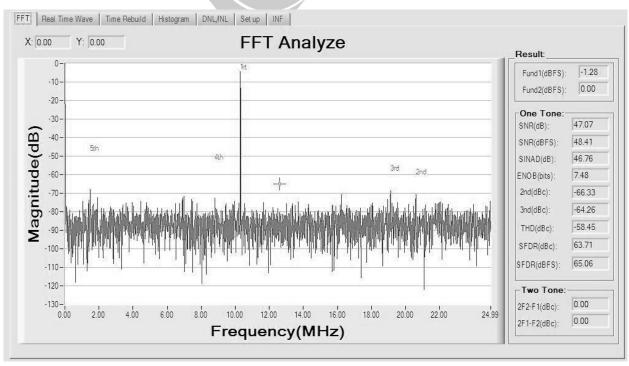


图 5 测试结果(VDDA=VDDD=3.3V, fCLK=50MHz, fIN=10.3MHz)

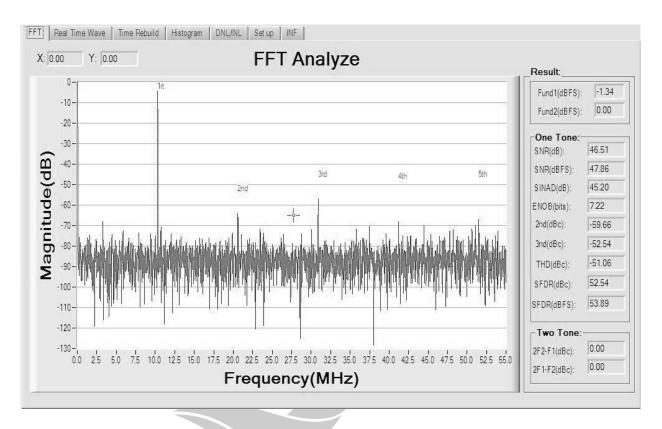


图 9 测试结果(VDDA=VDDD=3.3V, fCLK=110MHz, fIN=10.3MHz)

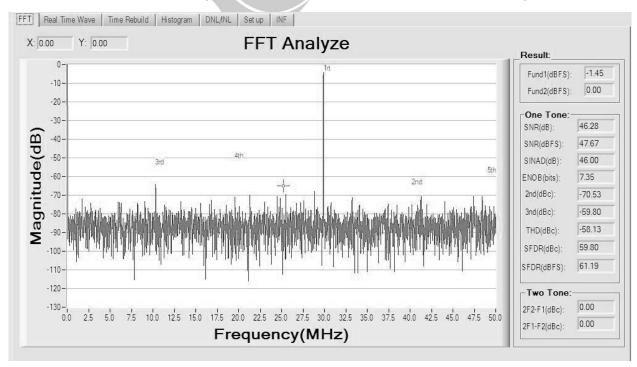


图 10 测试结果(VDDA=VDDD=3.3V, fCLK=100MHz, fIN=70.1MHz)

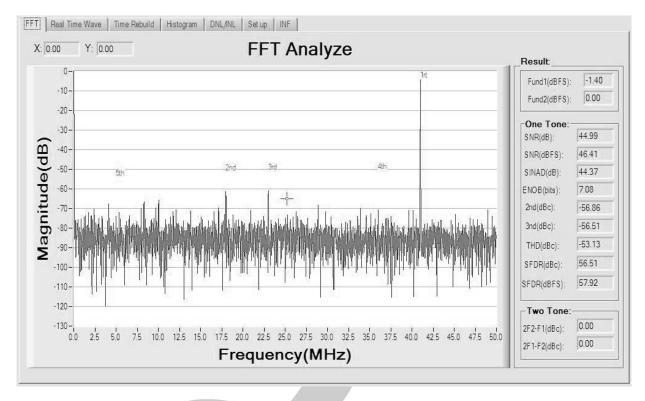


图 11 测试结果(VDDA=VDDD=3.3V, fCLK=100MHz, fIN=140.1MHz)

典型应用线路图

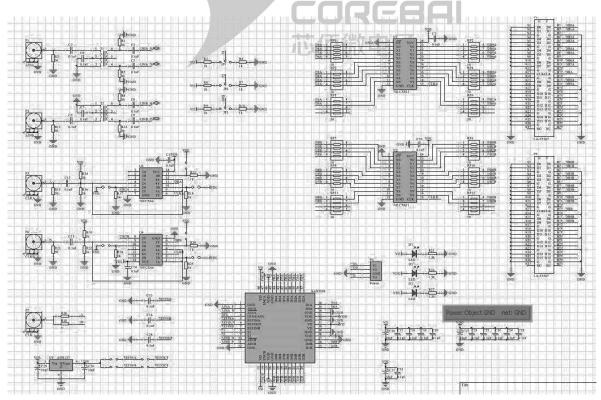
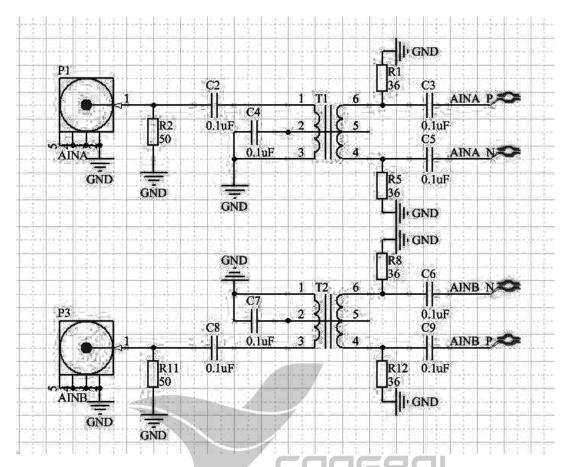



图 12 典型应用线路总图

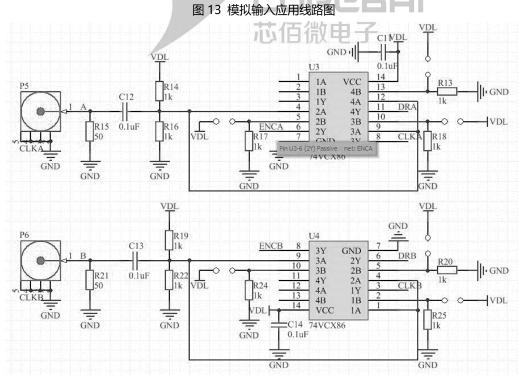


图 14 时钟输入线路图

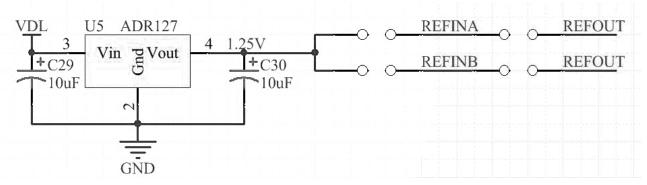


图 15 基准选择线路图

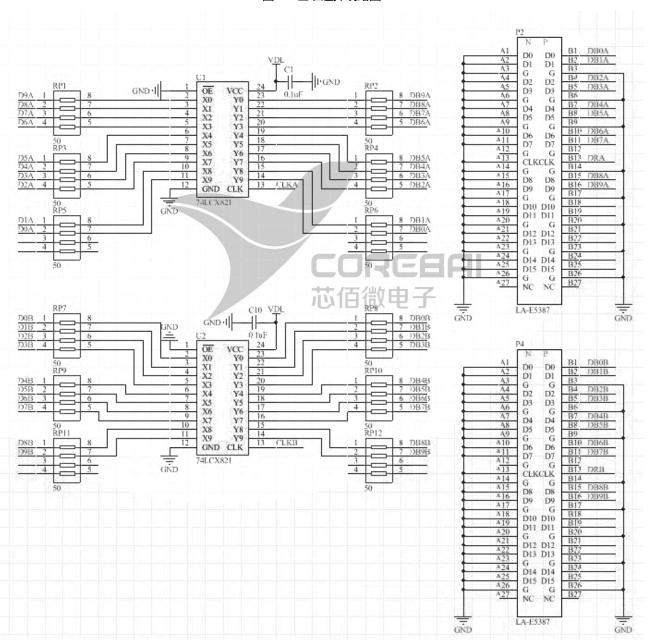


图 16 数据输出线路图

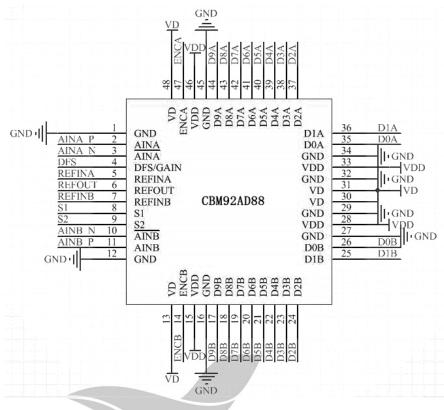


图 17 CBM92AD88 应用线路图

JREBAI

芯佰微电子

注意事项

1) 产品安装注意事项:

- 1) 安装前确认安装方向。
- 2) 安装、焊接过程中注意静电防护。
- 3) 该产品是高速 ADC 电路, 数字电源和模拟电源尽量分开, 使用时要求电源电压准确及稳定, 需对产品的电源端采取干扰信号滤波措施, 0.1µF 的滤波电容, 且去耦电容在放置时注意尽量靠近电源管脚, 否则在高频下达不到产品性能。
- 4) 要求应用对象电路板有一个完整干净的地,且电路的接地管脚应该通过尽量多的渠道和足够多的面积 与 PCB 板的地层相连。

2) 产品使用注意事项:

- 1) 上电后至少稳定 1ms, 再取输出数据。
- 2) 绝对最高工作电压: 4V。
- 3) 要求应用对象为多层布线板,且内含独立的地层。
- 4) 要求应用对象电路板的数字地和模拟地尽量分离,不要将数字线布于模拟信号输入端口旁边或于 ADC 底下。
- 5) 差分输入应尽量靠近且相互平行,模拟输入信号与输入时钟之间最好进行敷地隔离。

- 6) 输入连线应尽量短且较少转折,以最小化寄生电容和噪声引入.
- 3) 产品防护注意事项:
- 1) 产品贮存的温湿度和环境要求 (温度 10℃~25℃, 相对湿度 25%~70%)
- 2) 产品所有引出端均设计有静电保护结构,不过大能量电脉冲仍然可能损坏电路,因此在产品包装、贮存、运输过程中,应注意防止 ESD 损伤
- 3) 该产品静电等级规范上为>1000V,实际测试值为>4000V

常见故障及处理办法

- 1、 器件电源电流异常: 检查电源、地信号连接是否正常, 确保电源电压稳定。
- 2、 器件无转换功能: 时钟输入高低电平及频率是否满足推荐工作条件要求; 模拟输入和时钟输入端口外接变压器是否完好; 功能配置端口电平是否满足工作条件以及是否稳定。

