

Description

SE34063 is a monolithic switching regulator control circuit containing the primary functions required for DC-DC converters. This device consists of internal temperature compensated reference, voltage comparator, controlled duty cycle oscillator with active current limit circuit, driver and high current output switch. The device is specifically designed to be used in Step-Down, Step-Up and Voltage-Inverting applications with a minimum number of external components.

SE34063 is the enhanced version with the ability to work in higher frequency.

SE34063 is available in 2 packages: SOP- 8 and DIP-8.

Features

- Operation from 3V to 40V
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.2A
- Output Voltage Adjustable
- Operation Frequency up to 180 kHz (CT = 100pF)
- Precision 2% Reference

Application

- Battery Chargers
- NICs/Switches/Hubs
- ADSL Modems
- Negative Voltage Power Supplies

Package	Pin Number	Pin Name	Pin Function Description
DIP-8	1	Switch Collector	Internal switch transistor collector
	2	2 Switch Emitter Internal switch transist	
8	3	Timing Capacitor	Timing Capacitor to control the switching frequency
1	4	GND	Ground pin for all internal circuits
SOP-8	5	Comparator Inverting Input	Inverting input pin for internal comparator
	6	V _{cc}	Voltage supply
5			Peak Current Sense Input by monitoring the voltage
8	7	I _{PK} Sense	drop across an external I sense resistor to limit the
1			peak current through the switch
	8	Driver Collector	Voltage driver collector

Schematic Diagram And Pin Description

Ordering Information

Part	t Number	Marking Information	Package	Remarks
SE	34063F	SE34063	SOP-8	YYWW means Production batch
SE	34063D	YYWW-LF	DIP-8	LF means Lead-free

Recommended Operating Conditions

Symbol	Parameter	Min	Мах	Unit
V _{cc}	Supply Voltage	3	40	V
T _A	Ambient Temperature	-40	85	°C

Absoulute Maximum Ratings (Note 1)

Symbol		Max	Units	
V _{cc}	Powe	40	V	
V _{IR}	Comparato	or Input Voltage Range	-0.3 to 40	V
V _{C (SWITCH)}	Switch	Collector Voltage	40	V
V _{E (SWITCH)}	Switch Emitt	er Voltage (Vpin1= 40V)	40	V
V _{CE (SWITCH)}	Switch Colle	ector to Emitter Voltage	40	V
V _{C (DRIVER)}	Driver	Collector Voltage	40	V
I _{C (DRIVER)}	Driver Colle	100	mA	
I _{SW}	S	1.2	Α	
Power Dissipation And	Thermal Characteristic	S	·	
P _D		Power Dissipation (TA= 25°C)	1.25	W
R _{JA}	DIP Package	Thermal Resistance	100	°C/W
P _D		Power Dissipation (TA= 25°C)	625	mW
R _{JA}	SOP Package	Thermal Resistance	160	°C/W
TJ	Operating	150	°C	
T _{STG}	Storage Temperature Range		-65 to 150	°C
ESD for SE34063		2000	V	

SEE NOTES ON THE NEXT PAGE ...

Electrical Characteristic

V_{cc} = 5V, T_A =25°C, unless otherwise noted;

Symbol	Parameter Test Conditions		Min	Тур	Max	Unit	
Oscillator							
Fosc	Frequency	Vpin5 = 0V; $T_A = 25^{\circ}C$; $C_T = 1 \text{ nF}$	30	38	45	kHz	
I _{CHG}	Charge Current	$V_{CC} = 5.0V$ to 40V; $T_A = 25^{\circ}C$	30	38	45	μA	
I _{DISCHG}	Discharge Current	$V_{CC} = 5.0V$ to 40V; $T_A = 25^{\circ}C$	180	240	290	μA	
I _{DISCHG} /I _{CHG}	Discharge to Charge Current	Ratio Pin 7 to V_{CC} ; $T_A = 25^{\circ}C$	5.2	6.5	7.5	-	
V _{IPK(SENCE)}	Current Limit Sense Voltage	$I_{CHG} = I_{DISCHG}; T_A = 25^{\circ}C$	250	300	350	mV	
Output Switc	h (Note 3)						
M	Saturation Voltage,	L = 0.94: Ding 1.9 connected		1.0	1.3	V	
V _{CE(SAT)}	Darlington connection	I _{SW} = 0.8A; Pins 1,8 connected	-	1.0	1.3	v	
V	Saturation Voltage	$I_{\text{SW}} = 0.8 \text{ A}; \text{ Rpin } 8 = 82 \text{ to } V_{\text{CC}};$		0.45	0.0	V	
$V_{CE(SAT)}$	(see NOTE 4)	Forced $\beta = 20$	-	0.45	0.8	v	
h _{FE}	DC Current Gain	I _{SW} = 0.8 A; V _{CE} = 5.0 VTA=25°C	50	75	-	-	
I _{C(OFF)}	Current Collector Off-State	V _{CE} = 40 V	-	0.01	100	μA	

Electrical Characteristic (Continued)

Comparate	Comparator							
V _{TH}	Threshold Voltage	$T_A = 25^{\circ}C$	1.225	1.25	1.275	V		
REG _{LINE}	Threshold Voltage Line Regulation	$V_{CC} = 3V$ to 40 V	-	1.4	5	mV		
I _{IB}	Input Bias Current	V _{IN} = 0 V	-	-20	-400	nA		
Total De	Total Device							
I _{CC}	Supply Current	$V_{CC} = 5.0 \text{ V to } 40 \text{ V}; C_T = 1.0 \text{nF}, \text{ Pin 7} = V_{CC};$ Vpin 5 > Vth; Pin 2 = GND; other pins open	-	-	4	mA		

NOTES

1: Stresses greater than those listed under «Absolute Maximum Ratings» may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under «Recommended Operating Conditions» is not implied. Exposure to «Absolute Maximum Ratings» for extended periods may affect device reliability.

2: Maximum package power dissipation limits must be observed.

3: Low duty cycle pulse technique are used during test to maintain junction temperature as close to ambient temperature as possible.

4: If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (\leq 300mA) and high driver currents (\geq 30mA), it may take up to 2.0µs for it to come out of saturation. This condition will shorten the off time at frequencies 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

Forced β of output switch: 10

$$\frac{I_{C(OUTPUT)}}{I_{C(DRIVER)} - 7.0mA^*} \ge 10$$

* The 100Ω resistor in the emitter of the driver device requires about 7 mA before the output switch conducts.

Typical Performance Characteristics

Typical Applications

STEP-UP CONVERTER

This is a typical step-up converter configuration. In the steady state, if the resistor divider voltage at pin 5 is greater than the voltage in the non-inverting input, which is 1.25V deter-mined by the internal reference, the output of the comparator will go low. At the next switching period, the output switch will not conduct and the output voltage will eventually drop below its nominal voltage until the divider voltage at pin 5 is lower than 1.25V. Then the output of the comparator will go high, the output switch will be allowed to conduct. Since Vpin5 = Vour * Vour R2/(R1+R2) = 1.25(V), the output voltage can be decided by Vout = 1.25 * (R1+R2)/R2 (V).

STEP-DOWN CONVERTER

L1 150uł

3

С_Т 1500р

> C2 1000µF

R1 953

1N5819

/ou

-12V/100m

OPTIONAL

This is a typical step-down converter configuration. The working process in the steady state is similar to step-up converter, Vpin5 = VOUT * R2/(R1+R2) = 1.25 (V), the output voltage can be decided by VOUT = 1.25 * (R1+R2)/R2 (V).

VOLTAGE INVERTING CONVERTER

This is a typical inverting converter configuration. The working process in the steady state is similar to step-up converter, the difference in this situation is that the voltage at the noninverting pin of the comparator is equal to 1.25V+VOUT, then Vpin5=VOUT * R2/(R1+R2) = 1.25V+VOUT, so the output voltage can be decided by VOUT = -1.25 * (R1+R2)/R1 (V).

VIN 4.5-6V

R_{SC} 0.4

C1 100µF

> R2 8.2k

Outline Drawing DIP-8

DIMENSIONS						
DI₿	IN	СНЕ	MM			
	MIN	MAX	MIN	MAX		
Α	0.	131	3.	32		
а	0.02	0	0.51			
В	0.04	50.06	51.15	1.65		
b	0.01	40.02	20.350	60.55		
b1	0.008	0.012	0.204	0.304		
D		0.430		10.92		
E	0.313	0.384	7.95	9.75		
е	0.	100	2.	54		
e1	0.	300	7.62			
F		0.260		6.60		
I		0.200		5.08		
L	0.125	0.150	3.18	3.81		
Z		0.060		1.52		

Outline Drawing SOP-8

	DIMENSIONS						
DIM ^N	INC	HES	MM				
DIN	MIN	MAX	MIN	MAX			
А	0.0532	0.0688	1.35	1.75			
A1	0.0040	0.0098	0.10	0.25			
В	0.0130	0.0200	0.33	0.51			
B1	0.050	BSC	1.27 BSC				
С	0.0075	0.0098	0.19	0.25			
D	0.1890	0.1968	4.80	5.00			
Н	0.2284	0.2440	5.80	6.20			
Е	0.1497	0.1574	3.80	4.00			

Customer Support

Seaward Electronics Incorporated – China Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road Haidian District, Beijing 100085, China Tel: 86-10-8289-5700/01/05 Fax: 86-10-8289-5706 Seaward Electronics Corporation – Taiwan 2F, #181, Sec. 3, Minquan East Rd, Taipei, Taiwan R.O.C Tel: 886-2-2712-0307 Fax: 886-2-2712-0191 Seaward Electronics Incorporated – North America 1512 Centre Pointe Dr. Milpitas, CA95035, USA

Tel: 1-408-821-6600