

Item no.: T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 17.08.2015

Customer: Standard type

Customers Part no.:

Page 1 of 5

Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- · Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- · Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- Low response time
- · Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptable Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	25	Α
R_{M}	Measuring resistance V _C =± 12V	10 200	Ω
	$V_C=\pm 15V$	22 400	Ω
I _{SN}	Secondary nominal r.m.s. current	25	mA
K _N	Turns ratio	13 : 1000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range				
	@ $V_C = \pm 12V$, $R_M = 10 \Omega$ ($t_{max} = 10 sec$)	±120			Α
	@ $V_C = \pm 15V$, $R_M = 22 \Omega$ ($t_{max} = 10 sec$)	±130			Α
X	Accuracy @ I_{PN} , $\theta_A = 25^{\circ}C$		0.1	0.5	%
ϵ_{L}	Linearity			0.1	%
I_0	Offset current @ $I_P=0A$, $\theta_A=25$ °C		0.02	0.1	mA
t _r	Response time		500		ns
t_{ra}	Reaction time at di/dt = 100 A/ μ s		200		ns
f _{BW}	Frequency bandwidth	DC200)		kHz

General data

		min.	typ.	max.	Unit
$artheta_{A}$	Ambient operating temperature	-40		+85	°C
∂s	Ambient storage temperature	-40		+90	°C
m	Mass		12		g
V_{C}	Supply voltage	±11.4	±12 or ±15	±15.75	V
lc	Current consumption		18,5		mA
*S _{clear}	clearance (component without solder pad)	10.2			mm
*S _{creep}	creepage (component without solder pad)	10.2			mm
*U _{sys}	System voltage			600	V_{RMS}
*U _{AC}	Working voltage			1020	V_{RMS}
*U _{PD}	Rated discharge voltage			1400	Vs
	Max. potential difference acc. to UL 508			600	V_{AC}

*Constructed and manufactored and tested in accordance with EN 61800-5-1:2007 (Pin 1 - 6 to Pin 7 – 9) Reinforced insulation, Insulation material group 1, Pollution degree 2, overvoltage category 3

Date	Name	Isuue	Amendment
17.08.15	DJ	82	Marking of item-no, value of primary resistance in page 2 (possibilities of wiring).changed. CN-15-420
17.04.13	KRe.	82	Mechanical outline: marking with UL-sign. and max. potential difference added. CN-658

Hrg KB-E	Bearb: DJ	KB-PM: Sn.		freig.: Berton
editor	designer	check		released

Item no.:

T60404-N4646-X400

K-No.: 24578

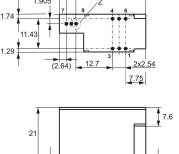
25 A Current Sensor

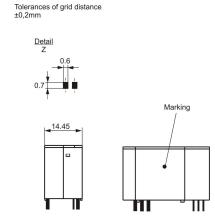
For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 17.08.2015

Customer: Standard type Customers Part no.:

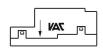
Page 2 5 of


Mechanical outline (mm):


General tolerances DIN ISO 2768-c

0.65

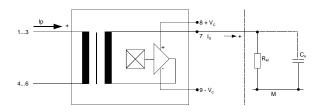
3x0.7x0.6


Connections: 1...6: Ø 1.0 mm 7...9: 0.6x0.7 mm

Marking:

Explanation:

DC = Date Code = Factory



6xØ1.0

Current direction: A positive output current appears at point I_s, by primary current in direction of the arrow.

3.5±0.5

Schematic diagram

Possibilities of wiring for V_C = ±15V (@ θ_A = 85°C, R_M = 22 Ω)

primary windings N _P	primary c RMS ma I _P [A] Î _{P,}		output current RMS I _S (I _P) [mA]	turns ratio	primary resistance R _P [mΩ]	wiring
1	25	130	25	1:1000	0.3	1 3 6 4
2	10	65	20	2:1000	1.35	3 6 4>
3	8	43	24	3:1000	2.4	3 6 4

Hrg KB-E	Bearb: DJ	KB-PM: Sn.		freig.: Berton
editor	designer	check		released

Item no.:

T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 17.08.2015

Customer: Standard type

Customers Part no.:

Page 3 of 5

Electrical Data (investigate by a type checking)

LIECTICAI Data	Investigate by a type checking)			
	min.	typ.	max.	Unit
V_{Ctot}	Maximum supply voltage (without function) ±15.75 ±18 V: for 1s per hour		±18	V
Rs	Secondary coil resistance @ θ _A =85°C		88	Ω
R_p	Primary coil resistance per turn @ T _A =25°C		1	mΩ
X_{Ti}	Temperature drift of X @ ϑ_A = -40 +85 °C		0.1	%
I _{0ges}	Offset current (including I ₀ , I _{0t} , I _{0T})		0.15	mA
l _{Ot}	Long term drift Offset current I ₀	0.05		mA
I _{OT}	Offset current temperature drift I ₀ @ ϑ _A = -40+85°C	0.05		mA
I _{0H}	Hyteresis current @ I _P =0 (caused by primary current 3 x I _{PN})	0.04	0.1	mA
$\Delta I_0/\Delta V_C$	Supply voltage rejection ratio		0.01	mA/V
i _{oss}	Offset ripple (with1 MHz- filter first order)		0,15	mA
i _{oss}	Offset ripple (with 100 kHz- filter first order)	0.03	0.05	mA
i _{oss}	Offset ripple (with 20 kHz- filter first order)	0.007	0.015	mA
C_k	Maximum possible coupling capacity (primary – secondary)	4		pF
	Mechanical Stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Oktave, 2 hours		10g	

Increation	(Measurement after temperature balance of the samples at room te	mnoroturo)
inspection	divieasurement after temperature balance of the samples at room te	mberature

$K_N(N_1/N_2)$	(V)	M3011/6	Transformation ratio (I _P =3*10A, 40-80 Hz)	13 : 100	0 ± 0.5 %
I_0	(V)	M3226	Offset current	< 0.1	mA
$V_{P,eff}$	(V)	M3014	Test voltage, rms, 1s Pin 1 - 6 to Pin 7 - 9	2.5	kV
V _e (AQI	_ 1/S4)		Partial discharge voltage acc. M3024 (RMS)	1300	V
			with V _{vor} (RMS)	1625	V

Type Testing (Pin 1 - 6 to Pin 7 – 9)

Designed according standard EN 61800-5-1:2007 with insulation material group 1

Vw	HV transient test according (to M3064) (1.2 µs / 50 µs-wave form)		8	kV
V_d	Testing voltage acc. M3014 (RMS)	(5 s)	5	kV
V _e	Partial discharge voltage acc. M3024 (RMS) with V _{vor} (RMS)		1500 1875	V V

Hrg KB-E	Bearb: DJ	KB-PM: Sn.	fr	reig.: Berton
editor	designer	check	re	eleased

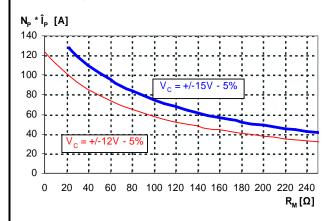
Item no.:

T60404-N4646-X400

K-No.: 24578

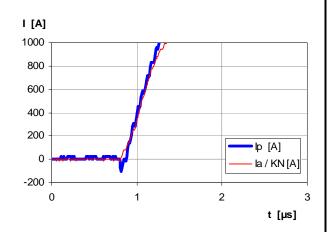
25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)


Date: 17.08.2015

Customer: Standard type Customers Part no.:

Page 4 of 5


Limit curve of measurable current ÎP(RM)

@ ambient temperature $T_A \le 85$ °C

Maximum measuring range (µs-range)

Output current behaviour of a 3kA current pulse @ $V_C = \pm 15V$ und $R_M = 25\Omega$

Fast increasing currents (higher than the specified $I_{p,max}$), e.g. in case of a short circuit, can be transmitted because the currents are transformed directly.

The offset ripple can be reduced by an external low pass. Simplest solution is a passive low pass filter of 1st order with

$$f_g = \frac{1}{2\pi \cdot R_M \cdot C_a}$$

In this case is the response time enlarged.

It is calculated from:

$$t_r' \le t_r + 2.5 R_M \cdot C_a$$

Applicable documents

Constructed and manufactored and tested in accordance with EN 61800.

Temperature of the primary conductor should not exceed 100°C. Further standards UL 508; file E317483, category NMTR2 / NMTR8

Hrg KB-E	Bearb: DJ	KB-PM: Sn.		freig.: Berton
editor	designer	check		released

Item no.:

T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 17.08.2015

Customer: Standard type

Customers Part no.:

Page 5 of 5

 I_{OH} : Zero variation of I_o after overloading with a DC of tenfold the rated value ($R_M = R_{MN}$)

l_{0t}: Long term drift of l₀ after 100 temperature cycles in the range -40 bis 85 °C.

t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{Pmax}$ between a rectangular current and the output current.

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output current i_a with a primary current rise of di₁/dt = 100 A/ μ s.

X_{ges}(I_{PN}): The sum of all possible errors over the temperature range by measuring a current I_{PN}:

$$X_{ges} = 100 \cdot \left| \frac{I_{S}(I_{PN})}{K_{N} \cdot I_{SN}} - 1 \right| \%$$

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{I_{SB}}{I_{SN}} - 1 \right| \%$$

where I_{SB} is the output DC value of an input DC current of the same magnitude as the (positive) rated current ($I_0 = 0$)

X_{Ti}: Temperature drift of the rated value orientated output term. I_{SN} (cf. Notes on F_i) in a specified temperature range, obtained by:

$$X_{\text{Ti}} = 100 \cdot \left| \frac{I_{\text{SB}}(\theta_{\text{A2}}) - I_{\text{SB}}(\theta_{\text{A1}})}{I_{\text{SN}}} \right| \%$$

(I_{SB}: Secondary current θ_{A1} or θ_{A2})

 $\varepsilon_{\rm L}\!\!:\qquad\qquad \text{Linearity fault defined by}\qquad \varepsilon_{\rm L}\!\!=\!100\cdot\left|\frac{I_{\rm P}}{I_{\rm PN}}-\frac{I_{\rm Sx}}{I_{\rm SN}}\right|\%$

Where I_P is any input DC and I_{Sx} the corresponding output term.