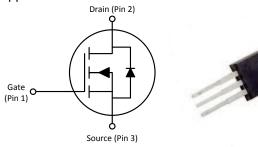


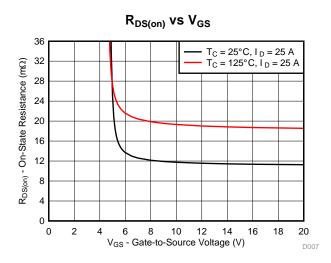
CSD18537NKCS

SLPS390A -JUNE 2013-REVISED MARCH 2015

CSD18537NKCS 60 V N-Channel NexFET™ Power MOSFET

Features


- Ultra Low Qa and Qad
- Low Thermal Resistance
- Avalanche Rated
- Pb Free Terminal Plating
- **RoHS Compliant**
- Halogen Free
- TO-220 Plastic Package


Applications

- High Side Synchronous Buck Converter
- Motor Control

Description

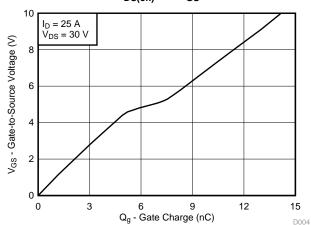
This 11 mΩ, 60 V TO-220 NexFET™ power MOSFET is designed to minimize losses in power conversion applications.

Product Summary

T _A = 25°	С	TYPICAL VA	UNIT			
V_{DS}	Drain-to-Source Voltage 60					
Q_g	Gate Charge Total (10 V)	tal (10 V) 14				
Q _{gd}	Gate Charge Gate-to-Drain	2.3	nC			
0	Drain-to-Source On-Resistance	V _{GS} = 6 V 14		mΩ		
R _{DS(on)}	Diam-to-Source On-Resistance	V _{GS} = 10 V 11		mΩ		
$V_{GS(th)}$	Threshold Voltage	3		V		

Ordering Information(1)

	_			
Device	Package	Media	Qty	Ship
CSD18537NKCS	TO-220 Plastic Package	Tube	50	Tube


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

	Absolute maximum realings									
T _A = 2	5°C	VALUE	UNIT							
V_{DS}	Drain-to-Source Voltage	60	V							
V_{GS}	Gate-to-Source Voltage	±20	V							
	Continuous Drain Current (Package limited)	50								
I _D	Continuous Drain Current (Silicon limited), $T_C = 25^{\circ}C$	56	Α							
	Continuous Drain Current (Silicon limited), $T_C = 100$ °C	39								
I_{DM}	Pulsed Drain Current (1)	127	Α							
P_D	Power Dissipation	94	W							
T _J , T _{stg}	Operating Junction and Storage Temperature Range	-55 to 175	°C							
E _{AS}	Avalanche Energy, single pulse $I_D=33~A,~L=0.1~mH,~R_G=25~\Omega$	55	mJ							

(1) Max $R_{\theta JC} = 1.6^{\circ}C/W$, pulse duration $\leq 100 \ \mu s$, duty cycle $\leq 1\%$

R_{DS(on)} vs V_{GS}

Table of Contents

1	Features 1	5.3 Typical MOSFET Characteristics
2	Applications 1	6 Device and Documentation Support
	Description 1	6.1 Trademarks
	Revision History2	6.2 Electrostatic Discharge Caution
	Specifications	6.3 Glossary
	5.1 Electrical Characteristics	7 Mechanical Packaging, and Orderable
	5.2 Thermal Information	7.1 KCS Package Dimensions

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	Changes from Original (June 2013) to Revision A	Page
•	Added part number to title	1
•	Increased the T _C = 25° continuous drain current to 56 A	1
•	Increased the T _C = 125° continuous drain current to 39 A	1
•	Increased the pulsed drain current to 127 A	1
•	Increased the max power dissipation to 94 W	1
•	Increased the max operating junction and storage temperature to 1750	1
•	Updated the pulsed current conditions	1
•	Updated Figure 1 from a normalized R _{BJA} to an R _{BJC} curve	4
•	Updated Figure 6 to extend to 175°C	5
•	Updated Figure 8 to extend to 175°C	5
•	Updated the SOA in Figure 10	6
•	Updated Figure 12 to extend to 175°C	6

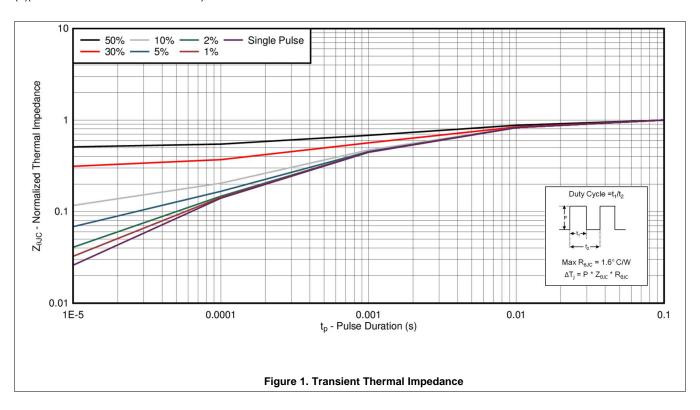
5 Specifications

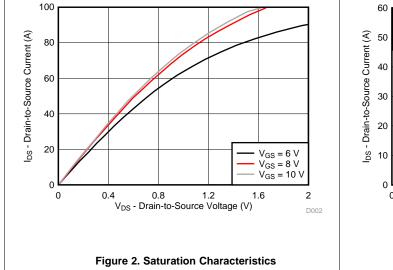
5.1 Electrical Characteristics

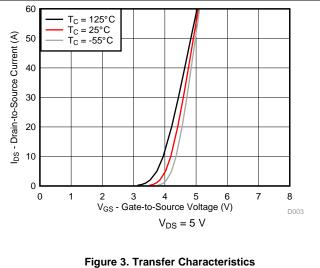
 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
STATIC	CHARACTERISTICS				
BV _{DSS}	Drain-to-Source Voltage	V _{GS} = 0 V, I _D = 250 μA	60		V
I _{DSS}	Drain-to-Source Leakage Current	V _{GS} = 0 V, V _{DS} = 48 V		1	μΑ
I _{GSS}	Gate-to-Source Leakage Current	V _{DS} = 0 V, V _{GS} = 20 V		100	nA
V _{GS(th)}	Gate-to-Source Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2.6 3	3.5	V
<u></u>	Designate Course On Registeres	V _{GS} = 6 V, I _D = 25 A	14	18	mΩ
R _{DS(on)}	Drain-to-Source On-Resistance	V _{GS} = 10 V, I _D = 25 A	11	14	mΩ
g_{fs}	Transconductance	V _{DS} = 30 V, I _D = 25 A	100		S
DYNAM	IC CHARACTERISTICS				
C _{iss}	Input Capacitance		1140	1480	pF
C _{oss}	Output Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V}, f = 1 \text{ MHz}$	136	177	pF
C _{rss}	Reverse Transfer Capacitance		4.0	5.2	pF
R_G	Series Gate Resistance		5.5	11	Ω
Qg	Gate Charge Total (10 V)		14	18	nC
Q _{gd}	Gate Charge Gate-to-Drain	V 00 V 1 05 A	2.3		nC
Q _{gs}	Gate Charge Gate-to-Source	$V_{DS} = 30 \text{ V}, I_{D} = 25 \text{ A}$	5.2		nC
Q _{g(th)}	Gate Charge at V _{th}		3.3		nC
Q _{oss}	Output Charge	V _{DS} = 30 V, V _{GS} = 0 V	25		nC
t _{d(on)}	Turn On Delay Time		4.5		ns
t _r	Rise Time	V _{DS} = 30 V, V _{GS} = 10V,	3.2		ns
t _{d(off)}	Turn Off Delay Time	$I_{DS} = 25 \text{ A}, R_G = 0 \Omega$	12.6		ns
t_f	Fall Time		3.9		ns
DIODE (CHARACTERISTICS		ı		
V_{SD}	Diode Forward Voltage	I _{SD} = 25 A, V _{GS} = 0 V	0.9	1	V
Q _{rr}	Reverse Recovery Charge	V _{DS} = 30 V, I _F = 25 A,	77		nC
t _{rr}	Reverse Recovery Time	di/dt = 300 A/µs	50		ns

5.2 Thermal Information

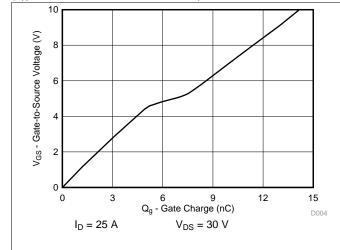

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$


	THERMAL METRIC	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-Case Thermal Resistance			1.6	°C/W
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance			62	C/VV


Copyright © 2013–2015, Texas Instruments Incorporated

5.3 Typical MOSFET Characteristics

(T_A = 25°C unless otherwise stated)


Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

Typical MOSFET Characteristics (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

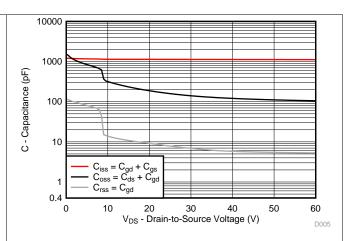


Figure 4. Gate Charge

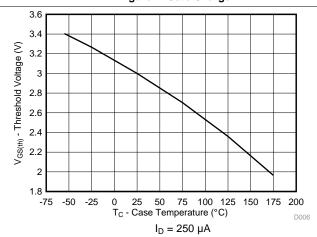


Figure 5. Capacitance

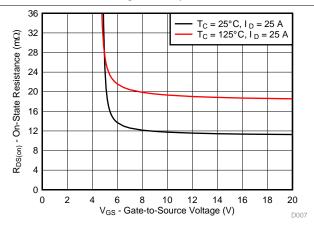


Figure 6. Threshold Voltage vs Temperature

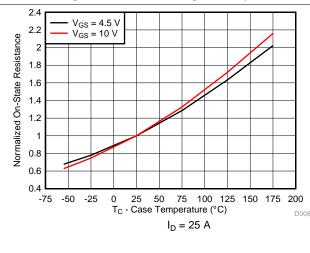
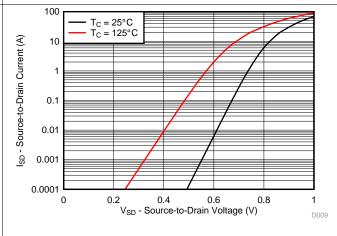


Figure 7. On-State Resistance vs Gate-to-Source Voltage



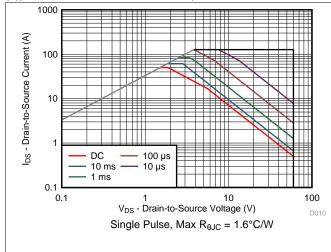

Figure 8. Normalized On-State Resistance vs Temperature

Figure 9. Typical Diode Forward Voltage

Typical MOSFET Characteristics (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

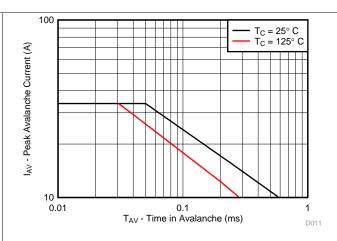


Figure 10. Maximum Safe Operating Area (SOA)

Figure 11. Single Pulse Unclamped Inductive Switching

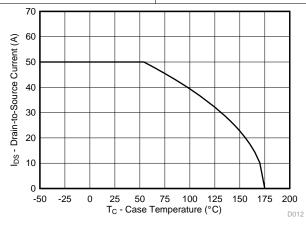


Figure 12. Maximum Drain Current vs Temperature

6 Device and Documentation Support

6.1 Trademarks

NexFET is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

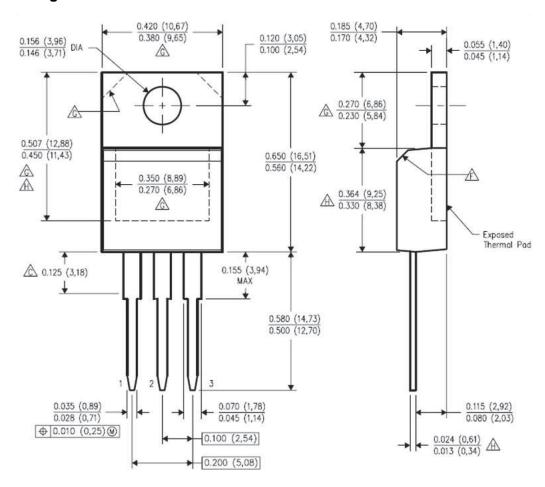
6.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.


Copyright © 2013–2015, Texas Instruments Incorporated

7 Mechanical Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7.1 KCS Package Dimensions

Notes:

- 1. All linear dimensions are in inches
- 2. This drawing is subject to change without notice
- 3. Lead Dimensions are not controlled within "C" area
- 4. All lead dimensions apply before solder dip
- 5. The center lead is in electrical contact with the mounting tab
- 6. The chamfer at "F" is optional
- 7. Thermal pad contour at "G" optional with these dimensions
- 8. "H" Falls within JEDEC TO-220 variation AB, except minimum lead thickness, minimum exposed pad length, and maximum body length.

Pin Configuration

	0
Position	Designation
Pin 1	Gate
Pin 2 / Tab	Drain
Pin 3	Source

PACKAGE OPTION ADDENDUM

5-Jan-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
CSD18537NKCS	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS Exempt)	CU SN	N / A for Pkg Type	-55 to 175	18537N	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated