

隔离型、原边控制 PWM 调光型 PFC 驱动控制器

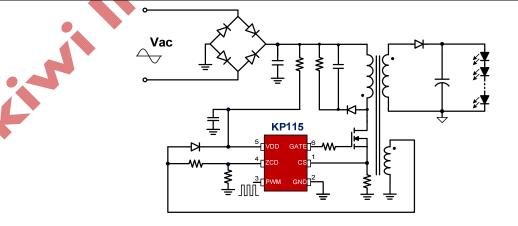
主要特点

- 低成本原边控制方案,系统效率高于90%
- 功率因数大于 0.95, THD 小于 15%
- 快速的启动时间,小于 500ms
- 无闪烁 PWM 调光
- 数字 PWM 控制,无需外部补偿
- 准谐振工作模式,效率高、EMI 性能优
- 集成式线电压和输出电压补偿优化调整率
- 内置完备的保护功能:
 - LED 开路和短路保护
 - 采样电阻开路和短路保护
 - VDD 过压保护 (OVP)
 - 逐周期过流保护
 - 线电压缺失保护
 - 过温保护(OTP)
 - 内部软启动
- 超小 SOT23-6L 封装

典型应用

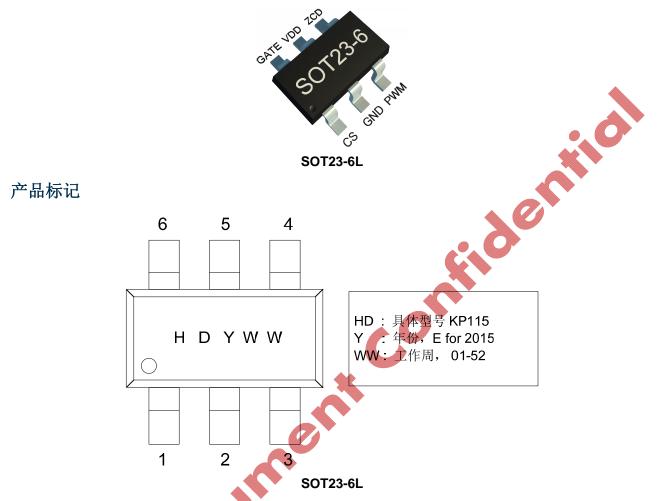
- 固态照明
- 智能调光

典型应用电路


产品描述

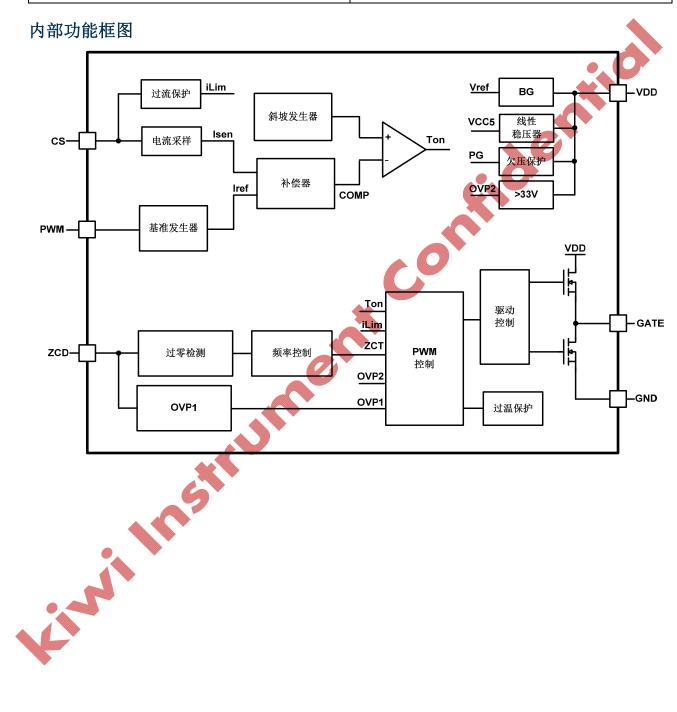
KP115 是一款离线式原边控制 PWM 驱动芯片。 KP115 主要应用于中小功率段单级式带 PFC 控制 的 AC-DC LED 驱动器中。

KP115 采用数字 PWM 控制方案和原边电流控制技术,在无需外部补偿和采用极少的外部元件完成低成本 LED 驱动器设计的同时,可获得高功率因数和优越的 LED 电流调整率。另外,芯片采用准谐振开关技术,可获得优越的 EMI 性能和较高的系统效率。


芯片适用于反激型和升降压型拓扑,可达到无闪烁 PWM 调光。

KP115 内置完备的保护功能,输入欠压保护 (UVLO)、LED 开路和短路保护、采样电阻短路和 开路保护、过压保护和过温保护。

管脚封装


管脚功能描述

管脚	名称	描述
1	CS	电流检测输入管脚
2	GND	芯片地
3	PWM	PWM调光信号输入管脚
4	ZCD	过零检测管脚,正常工作时ZCD管脚高电平需大于2V
5	VDD	芯片供电管脚。VIN电压高于24.5V,芯片开始工作;VIN电压低于9.5V,芯片停止工作。开机后,推荐的VIN工作电压在15V到30V之间
6	GATE	外部MOSFET栅极驱动管脚

订货信息

型号	描述		
KP115LGA	SOT23-6L,无卤,3000 颗/卷		

极限参数 (备注 1)

参数	值	单位
输入电压	40	V
门极电压	15	V
ZCD脚电压,PWM脚电压,CS脚电压	6	V
封装热阻结到环境 SOT23-6L (备注 2)	255	°C/W
最大结温	150	°C
焊接温度 (焊接, 10 s)	260	°C
存储温度范围	-40 to 150	°C
人体模型(备注 3)	3000	V
机器模型(备注 3)	200	V

推荐工作条件 (备注 4)

参数	值	单位
供电电压, VDD	15 to 30	V
工作结温	-40 to 125	°C

电气特性 (TA = 25℃, VDD=25V,除非另有说明)

符号	参数	测试条件	最小	典型	最大	单位
供电部分(VDI) 管脚)					
V_{DD_ON}	VDD输入启动电压		23	24.5	26	V
V _{DD_OFF}	VDD欠压保护门限		8.7	9.5	10.3	V
I _{START}	启动电流	VDD=20V		3	10	μA
lcc	输入供电电流	VDD=28V, Fsw=40kHz		1.5	3.5	mA
V _{OVP1}	过压保护门限		31.5	33.5	35.5	V
V _{DD_Clamp}	VDD箝位电压	Icc=5mA		36		V
控制功能部分 (CS 脚和 PWM 脚)						
V _{OCP_th}	过流保护门限		740	800	860	mV
Vref	内部输出电流基准		108	110	112	mV

隔离型、原边控制 PWM 调光型 PFC 驱动控制器

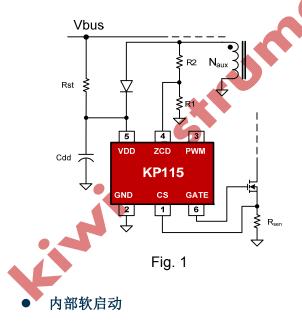
F _{PWM_Dim}	PWM 脚频率范围		0.1		20	kHz
V _{PWM_H}	PWM 输入高电平			1.5		V
V _{PWM_L}	PWM 输入低电平			0.6		V
过零电流检测	部分 (ZCD脚)					
V _{ZCD1}	ZCD触发门限	ZCD 上升沿		0.6		V
V _{ZCD2}	ZCD使能门限	ZCD 下降沿		1.6	1.92	ν
V _{ZCD_OVP}	过压保护门限		3.6	3.88	4.18	٧
t _{ZCD3}	ZCD OVP消隐时间			2		μS
门极驱动部分	(GATE脚)					
t _{ON_min}	最短导通时间		XC.	350		ns
t _{ON_max}	最长导通时间		17.8	21	24.2	μS
t _{Off_min}	最短关断时间			4		μS
T _{off_max}	最长关断时间		34	40	46	us
Fsw_max	最高开关频率	*		120		kHz
Fsw_min	最低开关频率		17.5	25	32.5	kHz
V _{GATE}	GATE 脚电压	7		15		V
T _{on_r} / T _{on_f}	GATE驱动上升/下降时间	C _{GATE} =1nF		100		ns
过温保护						
T _{SD}	过温保护门限		145			° C
T _{RC}	过温保护迟滞			80		° C

备注1: 超出列表中极限参数可能会对芯片造成永久性损坏。极限参数为额定应力值。在超出推荐的工作条件和应力的情况下,器件可能无法正常工作,所以不推荐让器件工作在这些条件下。过度暴露在高于推荐的最大工作条件下,会影响器件的可靠性。

备注2: Re按照JEDEC 51-3热测试标准,在自然对流环境温度T_A= 25℃条件下由低导热介质测试板上测得。

备注3: 器件对ESD敏感。使用时建议谨慎处理。

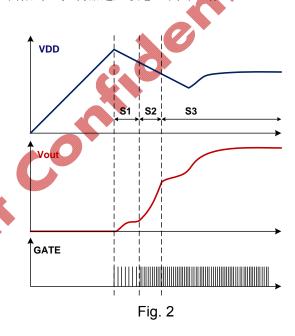
备注4: 超出上述工作条件不能保证芯片正常工作。



功能描述

KP115 是一款高性能、低成本、高度集成的 LED 驱动控制器。芯片工作在准谐振工作模式下,可有效降低开关损耗,提高系统效率。芯片适用于反激型和升降压型拓扑,采用固定开通时间(COT)的控制方式可以保证系统高功率因数。

● 欠压保护和系统启动


在 KP115 工作之前,芯片仅消耗典型值 3uA 的启动电流,VDD 电容由高压直流母线通过启动电阻进行充电。当 VDD 电压超过 V_{DD_ON}(典型 24.5V)后,芯片开始开关动作,同时芯片工作电流增加(典型 1.5mA);之后 VDD 电容电压由于芯片工作电流增加而开始下降,直到辅助绕组对 VDD 开始供电。在此过程中,VDD 不能降至 V_{DD_OFF} 以下(典型 9.5V),否则系统停止 switch 进入第二次启动过程并导致系统启动时间延长。较大的 UVLO 迟滞可以确保 VDD 足够长的维持时间,因此可以使用很小的 VDD 电容,缩短系统启动时间。

KP115 采用三态过程实现软启动,可快速建立输出 电压,并确保无 LED 电流过冲:

状态 **1**,检测 **CS** 脚开路和短路。一旦发生,系统立即进入重启模式直到故障解除。此状态开关频率为最低开关频率。

状态 2, 电感电流的大小由过流保护门限决定,控制器工作在临界导通模式下,加快了输出电容充电速度。当输出电压足够高且 ZCD 高电平大于 V_{ZCD2} 门限时,控制器进入状态 3 闭环工作。

● 恒流控制

为简化系统设计,KP115 采用原边电流控制技术。 在门极驱动信号下降沿,芯片采样开关的峰值电 流。根据采样的峰值电流和副边续流二极管的导通 时间计算出 LED 电流作为闭环控制的反馈信号并 进行输出电流调节。

输出电流计算公式如下:

$$I_o = \frac{V_{ref}}{2 \cdot R_{sen}} \cdot N_{PS}$$

其中:

V_{ref}---内部输出电流基准, 典型 110mV

R_{sen}---原边电流采样电阻

N_{PS}---对于反激变换器为原副边绕组匝比;对于升降压电路 **N**_{PS}=1

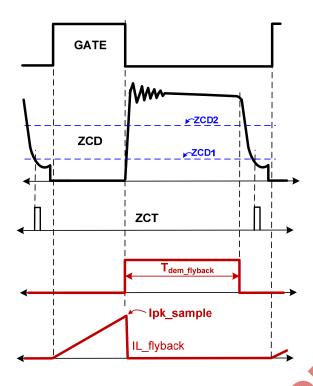
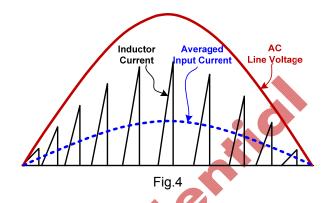


Fig. 3

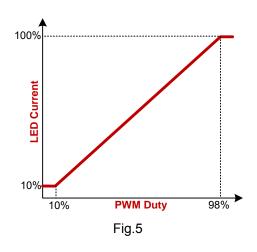
● 电流过零检测


为实现准谐振工作,芯片需检测副边续流二极管的导通时间。当流过续流二极管的电流下降至零时, ZCD 脚电压开始下降并低于门限 V_{ZCD1}时,芯片内 产生 ZCT 信号并经过固定时间延时触发下一个开 关周期。

● 自适应数字 PWM 控制

KP115 采用数字 PWM 控制方案实现 LED 电流控制,通过计算误差信号产生 PWM 信号,可以简化系统设计,在提高系统可靠性的同时也可以获得优越的 LED 电流调整率。

为实现高功率因数,芯片内部通过数字控制模块实现低带宽环路控制,确保在整个 AC 线电压周期内


导通时间趋于恒定,从而保证了平均输入电流的正 弦化。

● PWM 调光控制

芯片通过连续检测 PWM 脚的脉宽信号得到调光信号的占空比信息,之后内部将其转换成相应的输出电流基准电压,从而调整 LED 输出电流。芯片可接受的调光 PWM 信号的频率范围在 100Hz 到20KHz 之间。随着调光信号占空比的变化,输出电流基准和 GATE 导通时间受数字控制环路控制随之放生改变。对于 KP115, 当调光信号的占空比在98%到 10%之间变化时输出电流在 100%到 10%之间变化。

当 PWM 脚悬空时,输出电流达到最大值;当 PWM 脚电压为低时,输出电流为最小电流。实际中最小的输出电流受最小导通时间(典型 350ns)和输入电压决定。

● 前沿消隐(LEB)

当功率 MOSFET 开通时,采样电阻两端电压会出现一个电压尖峰。该电压尖峰是由原边结电容放电和副边整流二极管反向恢复造成。为了防止开关误关断,KP115 内部集成前沿消隐电路。在消隐周期内(典型 350ns),比较器禁用而不会关断驱动信号。因此,在 CS 脚和地之间串很小时间常数的RC 滤波器即可满足设计需求。

● 集成式线电压和输出电压补偿

采用原边控制技术,LED 电流通过采样开关的峰值 电流和占空比计算得到。关断延时和变压器的漏感 都会影响 LED 电流调整精度。

为减小不同输入和输出电压对 LED 电流的影响, KP115 集成了特殊的线电压和 LED 电压补偿电路。

● 保护机制

KP115 具备多种保护机制可有效防止系统损坏,提高了系统可靠性:

VDD过压保护 (OVP)

KP115 具有 VDD 过压保护功能 (闩锁模式保护)。若要重启系统,交流电网输入需重新插入一次。

ZCD过压保护 (OVP)

PWM 关断后延时 2us 开始检测 ZCD 脚电压。当 ZCD 电压达到过压保护门限 V_{ZCD_OVP} 后触发过压保护,系统进入到闩锁状态。若要重启系统,交流电网输入需重新插入一次。

CS脚悬空或短路保护

一旦 KP115 的 CS 脚悬空或短路,立即触发保护,系统进入自动重启模式。

逐周期电流保护

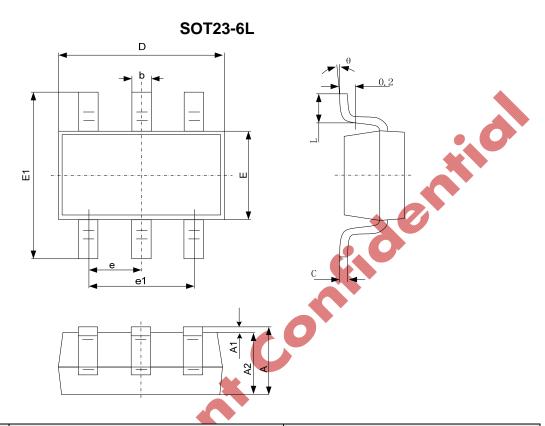
该保护为基本保护,在电流模式 PWM 控制器中可轻松实现。输出短路时,ZCD 电压变得非常低,过流保护限值根据 ZCD 电压等级进行调整。

过温保护

当芯片结温超过 **145℃时**,芯片停止工作;当芯片结温低于 **80℃时**,芯片重新启动工作。

LED开路和短路保护

当驱动器输出未接 LED 负载时,输出电压会飙升,从而导致 VDD 和 ZCD 脚电压升高。最终 VDD 或者 ZCD 脚的电压会达到过压保护门限从而触发过压保护。


当驱动器输出短路时,输出电压为零。此时辅助绕组不能提供足够的能量给 VDD。因此,VDD 电压会掉至欠压保护门限以下,系统关机。当 VDD 电压再次达到开启电压时,芯片又开始开关动作。

线电压掉电保护

当 AC 线电压掉电时, PWM 以最小导通时间和最低开关频率工作, 直到 AC 线电压恢复供电或芯片达到欠压保护。由此可避免由于电网接触不良或者不稳定对系统造成的冲击。

封装尺寸

符号	尺寸 (毫米)		尺寸 (英寸)		
117 5	最小	最大	最小	最大	
Α	0.900	1.200	0.035	0.047	
A1	0.000	0.150	0.000	0.006	
A2	0.900	1.100	0.035	0.043	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.800	3.020	0.110	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.600	3.000	0.102	0.118	
е	e 0.950 (中		0.037 (中心到中心)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

修订记录

日期	版本		描述	
2015/11/13	1.2	取消	ROHS 封装,添加 V _{ZCD2} 参数上限,	更新关于 PWM 调光原理的描述
				.0
联系方式:				
美国 (总部):		7	杭州 (技术研发):	深圳 (市场与技术支持):
地址: 2060 V	Valsh Ave.	Suite 244.	地址: 杭州市滨江区南环路3730号源越	地址: 深圳市南山区西丽路大学创意

联系方式:

地址: 2060 Walsh Ave, Suite 244,

Santa Clara, CA, 95050 电话: 1-408-475-6888 传真: 1-408-905-6912

邮箱: marketing@kiwiinst.com

地址: 杭州市滨江区南环路3730号源越

大厦208

电话: (86) 571-8663-2242 传真: (86) 571-8663-2243

邮箱: marketing@kiwiinst.com.cn

地址: 深圳市南山区西丽路大学创意

园B302-B303

电话: (86)755-8204-2689 传真: (86)755-82042192

邮箱: marketing@kiwiinst.com.cn

声明

必易科技确保以上信息准确可靠,同时保留在不发布任何通知的情况下对以上信息进行修改的权利。 使用者 在将必易科技的产品整合到任何应用的过程中,应确保不侵犯第三方知识产权,未按以上信息所规定的应用 条件和参数进行使用所造成的损失,必易科技不负任何法律责任。