SAMSUNG ELECTRO-MECHANICS

CIGT201610LM2R2MNE (2016 / EIA 0806)

APPLICATION

Smart phones, Tablet, Wearable devices, Power converter modules, etc.

FEATURES

Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free

RECOMMENDED LAND PATTERN

	Unit : mm
TYPE	2016
A	0.8
B	0.8
C	1.8

DIMENSION

TYPE	Dimension $[\mathrm{mm}]$			
	L	W	T	D
2016	2.0 ± 0.2	1.6 ± 0.2	1.0 max	0.5 ± 0.2

DESCRIPTION

Part no.	Size [inch/mm]	Thickness [mm] (max)	Inductance [uH]	Inductance tolerance (\%)	DC Resistance [m®]		Rated DC Current (Isat) [A]		Rated DC Current (Irms) [A]	
					Max.	Typ.	Max.	Typ.	Max.	Typ.
CIGT201610LM2R2MNE	0806/2016	1.0	2.2	± 20	154	128	1.6	1.7	1.6	1.7

* Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
* DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
* Maximum allowable DC current : Value defined when DC current flows and the initial value of inductance has decreased by 30% or
when current flows and temperature has risen to $40^{\circ} \mathrm{C}$ whichever is smaller. (Reference: ambient temperature is $25^{\circ} \mathrm{C} \pm 10$)
(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of
the initial inductance value at 30% (Reference: ambient temperature is $25^{\circ} \mathrm{C} \pm 10$)
(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised $40^{\circ} \mathrm{C}$ by DC current. (Reference: ambient temperature is $25^{\circ} \mathrm{C} \pm 10$)
* Absolute maximum voltage : Rated Voltage 20V.
* Operating temperature range : -40 to $+125^{\circ} \mathrm{C}$ (Including self-temperature rise)

PRODUCT IDENTIFICATION

$\frac{\mathrm{CIG}}{(1)}$	$\underset{(2)}{T}$	$\frac{2016}{(3)}$	$\frac{10}{(4)}$	$\frac{\text { LM }}{(5)}$	$\frac{2 R 2}{(6)}$	$\frac{\mathrm{M}}{(7)}$	$\frac{\underline{N}}{(8)}$
(1) Power Inductor				(2) Type (T: Metal Composite Thin Film Type)			
(3) Dimensior (2016: $2.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$)				(4) Thicknes (10: 1.0 mm)			
(5) Remark (Characterization Code)				(6) Inductan (2R2: 2.2 uH)			
(7) Toleranc ($\mathrm{M}: \pm 20 \%$)							
(8) Internal Code							
(9) Packagin	paper	E:emboss	ape)				

(9) Packaging (C:paper tape, E:embossed tape)

RECOMMENDED SOLDERING CONDITION

FLOW SOLDERING

IRON SOLDERING

Temperature of Soldering Iron Tip	$280^{\circ} \mathrm{C}$ max.
Preheating Temperature	$150^{\circ} \mathrm{C}$ min.
Temperature Differential	$\Delta \mathrm{T} \leq 130^{\circ} \mathrm{C}$
Soldering Time	3 sec max.
Wattage	50 W max.

PACKAGING

Packaging Style	Quantity(pcs/reel)
Embossed Taping	3000 pcs

Item	Specified Value	Test Condition
Solderability	More than 90% of terminal electrode should be soldered newly.	After being dipped in flux for 4 ± 1 seconds, and preheated at $150 \sim 180^{\circ} \mathrm{C}$ for $2 \sim 3 \mathrm{~min}$, the specimen shall be immersed in solder at $245 \pm 5^{\circ} \mathrm{C}$ for 4 ± 1 seconds.
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75\% min. Inductance change to be within $\pm 20 \%$ to the initial.	After being dipped in flux for 4 ± 1 seconds, and preheated at $150 \sim 180^{\circ} \mathrm{C}$ for $2 \sim 3 \mathrm{~min}$, the specimen shall be immersed in solder at $260 \pm 5^{\circ} \mathrm{C}$ for 10 ± 0.5 seconds.
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial.	Repeat 100 cycles under the following conditions. $-40 \pm 3^{\circ} \mathrm{C}$ for $30 \mathrm{~min} \rightarrow 85 \pm 3^{\circ} \mathrm{C}$ for 30 min
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial	$85 \pm 2^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$, for 500 ± 12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.
Low Temperature Test	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial.	Solder the sample on PCB. Exposure at $-55 \pm 2^{\circ} \mathrm{C}$ for 500 ± 12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.
High Temperature Test	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial.	Solder the sample on PCB. Exposure at $125 \pm 2^{\circ} \mathrm{C}$ for 500 ± 12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial	$85 \pm 2^{\circ} \mathrm{C}, 85 \%$ RH, Rated Current for 500 ± 12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.
High Temperature Loading Test	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial	$85 \pm 2^{\circ} \mathrm{C}$, Rated Current for 500 ± 12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.
Reflow Test	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial	Peak $260 \pm 5^{\circ} \mathrm{C}, 3$ times
Vibration Test	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial.	Solder the sample on PCB. Vibrate as apply $10 \sim 55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ amplitude for 2 hours in each of three $(X, Y, Z$) axis (total 6 hours).
	No mechanical damage	Bending Limit; 2mm Test Speed; $1.0 \mathrm{~mm} / \mathrm{sec}$. Keep the test board at the limit point in 5 sec . PCB thickness : 1.6 mm
Bending Test		
	No indication of peeling shall occur on the	W(kgf) TIME(sec)
		0.5 10 ± 1
Terminal Adhesion Test		
Drop Test	No mechanical damage Inductance change to be within $\pm 20 \%$ to the initial.	Random Free Fall test on concrete plate. 1 meter, 10 drops

1. Model : CIGT201610LM2R2MNE
2. Description

Part no.	$\begin{gathered} \text { Size } \\ {[\text { inch } / \mathrm{mm}]} \end{gathered}$	Thickness [mm] (max)	Inductance [uH]	Inductance tolerance (\%)	DC Resistance [m/2]		Rated DC Current (Isat) [A]		Rated DC Current (Irms) [A]	
					Max.	Typ.	Max.	Typ.	Max.	Typ.
CIGT201610LM2R2MNE	0806/2016	1.0	2.2	± 20	154	128	1.6	1.7	1.6	1.7

* Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
* DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
* Maximum allowable DC current : Value defined when DC current flows and the initial value of inductance has decreased by 30% or

$$
\text { when current flows and temperature has risen to } 40^{\circ} \mathrm{C} \text { whichever is smaller. (Reference: ambient temperature is } 25^{\circ} \mathrm{C} \pm 10 \text {) }
$$

(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of

$$
\text { the initial inductance value at } 30 \% \text { (Reference: ambient temperature is } 25^{\circ} \mathrm{C} \pm 10 \text {) }
$$

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of

$$
\text { the inductor is raised } 40^{\circ} \mathrm{C} \text { by DC current. (Reference: ambient temperature is } 25^{\circ} \mathrm{C} \pm 10 \text {) }
$$

* Absolute maximum voltage : Rated Voltage 20 V .
* Operating temperature range : -40 to $+125^{\circ} \mathrm{C}$ (Including self-temperature rise)

3. Characteristics data

1) Frequency characteristics (Ls)

Agilent E4294A +E4991A , 1MHz to $1,000 \mathrm{MHz}$

3) DC Bias characteristics (Typ.)

2) Frequency characteristics (Q)

Agilent E4294A +E4991A , 1MHz to $1,000 \mathrm{MHz}$

4)Temperature characteristics (Typ.)

2) Freque Agilent $E 4294 \mathrm{~A}+E 4991 \mathrm{~A}$ (M)

Any data in this sheet are subject to change, modify or discontinue without notice The data sheets include the typical data for design reference only. If there is any question regarding the data sheets, please contact our sales personnel or application engineers

