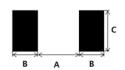


# Metal Composite Power Inductor Specification Sheet



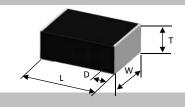
# CIGW201610GHR47MLE (2016 / EIA 0806)

### APPLICATION


Smart phones, Tablet, Wearable devices, Power converter modules, etc.



### FEATURES


Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free

### RECOMMENDED LAND PATTERN



|      | Unit : mm |
|------|-----------|
| TYPE | 2016      |
| Α    | 0.8       |
| В    | 0.8       |
| С    | 1.8       |
|      |           |

### DIMENSION



| TYPE | Dimension [mm] |         |         |         |  |  |  |
|------|----------------|---------|---------|---------|--|--|--|
| IIFL | L W            |         | T       | D       |  |  |  |
| 2016 | 2.0±0.2        | 1.6±0.2 | 1.0 max | 0.5±0.2 |  |  |  |

# **DESCRIPTION**

| Part no.           | Size                    | Thickness | Inductance | Inductance tolerance | DC Resistance [mΩ] |      | Rated DC Current (Isat) [A] |      | Rated DC Current (Irms) [A] |     |
|--------------------|-------------------------|-----------|------------|----------------------|--------------------|------|-----------------------------|------|-----------------------------|-----|
|                    | [inch/mm] [mm] (max) [u | [uH] (%)  | Max.       | Тур.                 | Max.               | Тур. | Max.                        | Тур. |                             |     |
| CIGW201610GHR47MLE | 0806/2016               | 1.0       | 0.47       | ±20                  | 32                 | 26   | 5.1                         | 5.5  | 3.6                         | 4.2 |

- \* Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- \* DC Resistance : Measured with a Resistance HP4338B or equivalent
- \* Maximum allowable DC current : Value defined when DC current flows and the initial value of inductance has decreased by 30% or

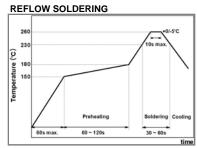
when current flows and temperature has risen to 40°C whichever is smaller. (Reference: ambient temperature is 25°C±10)

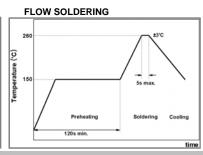
(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of

the initial inductance value at 30% (Reference: ambient temperature is  $25 \mbox{C} \pm 10$ )

(Irms): Allowable current of temperature rise: The temperature rise allowable current value is specified when temperature of

the inductor is raised 40°C by DC current. (Reference: ambient temperature is 25°C±10)


- \* Absolute maximum voltage : Rated Voltage 20V.
- \* Operating temperature range : -40 to +125°C (Including self-temperature rise)


# PRODUCT IDENTIFICATION

| <u>CIG</u> | <u>W</u> | <u> 2016</u> | <u>10</u> | <u>GH</u> | <u>R47</u> | <u>M</u>       | <u>L</u> | <u>E</u> |
|------------|----------|--------------|-----------|-----------|------------|----------------|----------|----------|
| (1)        | (2)      | (3)          | (4)       | (5)       | (6)        | <del>(7)</del> | (8)      | (9)      |

- (1) Power Inductor
- (3) Dimension (2016: 2.0mm ×1.6 mm)
- (5) Remark (Characterization Code)
- (7) Tolerance (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (2) Type (W: Metal Composite Wire Wound Type)
- (4) Thickness (10: 1.0mm)
- (6) Inductance (R47: 0.47 uH)

# RECOMMENDED SOLDERING CONDITION





| IRON SOLDERING     |             |  |  |
|--------------------|-------------|--|--|
| Temperature of     | 280°C max.  |  |  |
| Soldering Iron Tip | 200 Ciliax. |  |  |
| Preheating         | 150℃ min.   |  |  |
| Temperature        | 130 CIIIII. |  |  |
| Temperature        | ΔT≤130℃     |  |  |
| Differential       | Δ1 ≤130 C   |  |  |
| Soldering Time     | 3sec max.   |  |  |
| Wattage            | 50W max.    |  |  |

# PACKAGING

| Packaging Style | Quantity(pcs/reel) |
|-----------------|--------------------|
| Embossed Taping | 3000 pcs           |

| Item                                           | Specified Value                                                                                                  | Test Condition                                                                                                                                                                                                    |  |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Solderability                                  | More than 90% of terminal electrode should be soldered newly.                                                    | After being dipped in flux for 4±1 seconds, and preheated at $150 \sim 180  ^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                     |  |  |
| Resistance to Soldering                        | No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial. | After being dipped in flux for $4\pm1$ seconds, and preheated at $150\sim180^{\circ}\mathrm{C}$ for $2\sim3$ min, the specimen shall be immersed in solder at $260\pm5^{\circ}\mathrm{C}$ for $10\pm0.5$ seconds. |  |  |
| Thermal Shock<br>(Temperature Cycle test)      | No mechanical damage Inductance change to be within ±20% to the initial.                                         | Repeat 100 cycles under the following conditions.<br>-40±3°C for 30 min → 85±3°C for 30 min                                                                                                                       |  |  |
| High Temp. Humidity<br>Resistance Test         | No mechanical damage<br>Inductance change to be within ±20% to the initial                                       | 85±2°C, 85%RH, for 500±12 hours.  Measure the test items after leaving at normal temperature and humidity for 24 hours.                                                                                           |  |  |
| Low Temperature Test                           | No mechanical damage<br>Inductance change to be within ±20% to the initial.                                      | Solder the sample on PCB. Exposure at -55±2°C for 500±12 hours.  Measure the test items after leaving at normal temperature and humidity for 24hours.                                                             |  |  |
| High Temperature Test                          | No mechanical damage Inductance change to be within ±20% to the initial.                                         | Solder the sample on PCB. Exposure at 125±2°C for 500±12 hours.  Measure the test items after leaving at normal temperature and humidity for 24hours.                                                             |  |  |
| High Temp. Humidity Resistance<br>Loading Test | No mechanical damage<br>Inductance change to be within ±20% to the initial                                       | 85±2°C, 85%RH, Rated Current for 500±12 hours.  Measure the test items after leaving at normal temperature and humidity for 24 hours.                                                                             |  |  |
| High Temperature Loading Test                  | No mechanical damage<br>Inductance change to be within ±20% to the initial                                       | 85±2°C, Rated Current for 500±12 hours.  Measure the test items after leaving at normal temperature and humidity for 24 hours.                                                                                    |  |  |
| Reflow Test                                    | No mechanical damage<br>Inductance change to be within ±20% to the initial                                       | Peak 260±5℃, 3 times                                                                                                                                                                                              |  |  |
| Vibration Test                                 | No mechanical damage Inductance change to be within ±20% to the initial.                                         | Solder the sample on PCB. Vibrate as apply 10~55Hz, 1.5mm amplitude for 2 hours in each of three(X,Y,Z) axis (total 6 hours).                                                                                     |  |  |
|                                                | No mechanical damage                                                                                             | Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at the limit point in 5 sec. PCB thickness: 1.6mm                                                                                                   |  |  |
| Bending Test                                   | 45                                                                                                               | 20 Unit :mm  R340  45                                                                                                                                                                                             |  |  |
|                                                | No indication of peeling shall occur on the terminal electrode.                                                  | W(kgf) TIME(sec)                                                                                                                                                                                                  |  |  |
| Terminal Adhesion Test                         |                                                                                                                  | 0.5 10±1                                                                                                                                                                                                          |  |  |
| Drop Test                                      | No mechanical damage Inductance change to be within ±20% to the initial.                                         | Random Free Fall test on concrete plate. 1 meter, 10 drops                                                                                                                                                        |  |  |



# **Metal Composite Power Inductor**

# **Data Sheet**



# 1. Model: CIGW201610GHR47MLE

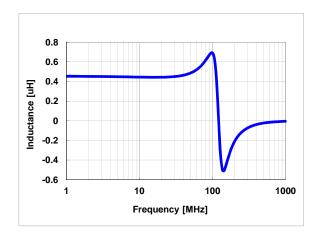
# 2. Description

| Part no.           | Size Thickness [mm] (max) | Thickness | Inductance | Inductance tolerance | DC Resista | ance [mΩ] | Rated DC C | Current (Isat) | Rated DC C | Current (Irms)<br>A] |
|--------------------|---------------------------|-----------|------------|----------------------|------------|-----------|------------|----------------|------------|----------------------|
| Part no.           |                           | [uH]      | (%)        | Max.                 | Тур.       | Max.      | Тур.       | Max.           | Тур.       |                      |
| CIGW201610GHR47MLE | 0806/2016                 | 1.0       | 0.47       | ±20                  | 32         | 26        | 5.1        | 5.5            | 3.6        | 4.2                  |

<sup>\*</sup> Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)

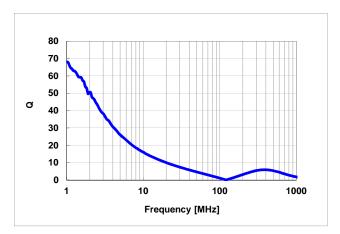
when current flows and temperature has risen to 40℃ whichever is smaller. (Reference: ambient temperature is 25℃±10)

(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of the initial inductance value at 30% (Reference: ambient temperature is 25°C±10)

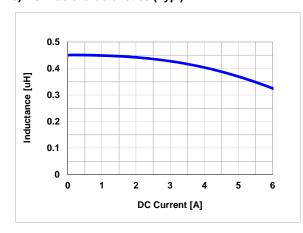

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of

the inductor is raised 40 ℃ by DC current. (Reference: ambient temperature is 25℃±10)

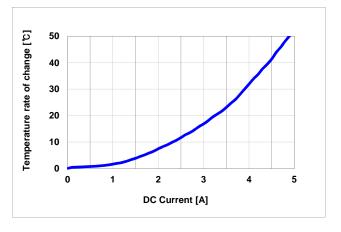
### 3. Characteristics data


# 1) Frequency characteristics (Ls)

Agilent E4294A +E4991A , 1MHz to 1,000MHz




# 2) Frequency characteristics (Q)


Agilent E4294A +E4991A , 1MHz to 1,000MHz



# 3) DC Bias characteristics (Typ.)



# 4)Temperature characteristics (Typ.)





<sup>\*</sup> DC Resistance : Measured with a Resistance HP4338B or equivalent

Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or

<sup>\*</sup> Absolute maximum voltage: Rated Voltage 20V.

<sup>\*</sup> Operating temperature range : -40 to +125°C (Including self-temperature rise)